

 IST PROGRAMME

 Action Line: IST-2002-8.1.2

End-User Development

Empowering people to flexibly employ advanced
information and communication technology

Contract Number IST-2001-37470

D3.2 Proceedings Workshop on End-User

Development held in conjunction with the ACM
CHI 2003 Conference

Editors:
Henry Lieberman, Fabio Paternò, Alex Reepenning, Volker Wulf

Summary

This document contains the proceedings of the workshop on End-user Development held in
conjunction with the ACM CHI conference (Fort Lauderdale, 6 April 2003).

October 2003

Henry Lieberman Fabio Paternò
MIT Media Lab ISTI-CNR

Alexander Repenning Volker Wulf
University of Colorado FRAUNHOFER-FIT

Table of Contents

Cooperative Development & Realization of Situation Dependent Mobile Services ………………………. 1
Michael Amberg and Jens Wehrmann

Personal Wizards: collaborative end-user programming …………………………………………………... 7
Lawrence Bergman, Tessa Lau, Vittorio Castelli and Daniel Oblinger

Software Engineering for End-User Programmers ………………………………………………………… 12
Margaret Burnett, Gregg Rothermel and Curtis Cook

End-User Programmers Need Improved Development Support …………………………………………... 16
David A. Carr

Software Shaping Workshops: Environments to Support End-User Development ……………………….. 19
M.F.Costabile, A. Piccinno, D. Fogli and P. Mussio

Supporting End User Programming of Context-Aware Applications ……………………………………... 23
Anind K. Dey and Tim Sohn

Some Generic Mechanisms for Increasing the Usability of EUD Environments ………………………….. 27
Simone Diniz Junqueira Barbosa, Philippe Palanque and Rémi Bastide

End user Development by Tailoring Blurring the border between Use and Development………………… 33
Yvonne Dittrich, Lars Lundberg and Olle Lindeberg

User-Programming of Net-Centric Embedded Control Software ………………………………………….. 39
Jens H. Jahnke, Marc d'Entremont, Mike Lavender and Andrew McNair

The EUD-Net’s Roadmap to End-User Development ……………………………………………………... 43
Markus Klann

Objects for Users End-User Development of a Cooperative Information Model ………………………….. 47
Barbara Kleinen

Toward a Culture of End-User Programming Understanding Communication
about Extending Applications ……………………………………………………………………………… 51

Cecília Kremer Vieira da Cunha and Clarisse Sieckenius de Souza

Feasibility Studies for Programming in Natural Language ………………………………………………… 55
Henry Lieberman and Hugo Liu

Using Domain Models for Data Characterization in PBE …………………………………………………. 56
José A. Macías and Pablo Castells

End User Programming for Web Users ……………………………………………………………………. 61
Robert C. Miller

Studying Development and Debugging to Help Create a Better Programming Environment …………….. 65
Brad Myers and Andrew Ko

Towards a Research Agenda in End User Development …………………………………………………... 69
Fabio Paternò

Prototyping Interactivity before Programming …………………………………………………………….. 73
John Sören Pettersson

 II

Fostering End-User Participation with the Oregon Groupware Development Process ……………………. 76
Till Schuemmer and Robert Slagter

Design Principles and Claims for End-User Development ………………………………………………… 80
Alistair Sutcliffe

The Pragmatic Web: Customizable Web Applications ……………………………………………………. 84
Alexander Repenning

Supporting End-User Development of Componet-Based Application
by Checking Sematic Integrity ……………………………………………………………………………... 88

Markus Won

Cooperative Development & Realization of
Situation Dependent Mobile Services

Michael Amberg, Jens Wehrmann

Friedrich-Alexander-University of Erlangen-Nuremberg, Department of Economics,

Chair for Business Information Systems III, Lange Gasse 20, 90403 Nuremberg, Germany,

email: amberg@wiso.uni-erlangen.de, jens.wehrmann@wiso.uni-erlangen.de

1 Motivation
As the experiences with mobile services are showing, service concepts known from the
stationary internet cannot be transferred into the mobile environment. Instead, only those mobile
services tend to be successful that take the specific features of the user’s context into account and
apply this information to generate an added value for the mobile customer. Services that
automatically adapt to the context are termed Situation Dependent Services (SDS). Initial
examples for SDS are mobile Location Based Services (LBS) or personalized internet services.
By now, LBS are based on a low level of situation dependency and use mostly simple filtering
techniques with database lookups.
A popular example of a service platform is i-mode that has been developed in Japan and was
recently launched in Europe. In i-mode only basic situation dependent services are supported by
now. One possibility to enrich and simplify the usage of a mobile service, is the adaptation to the
individual end-user’s needs. From the service provider’s point of view there are several aspects
that make the realization of situation dependent mobile services complex:

• Service providers are mainly context providers, not network providers.
• Service providers are not allowed to store data about the user’s behavior. (only with an

end-user’s agreement of confirmation or anonymization of information)
• Service providers have no access to sophisticated information about the end-user’s

situation, which is important for an efficient adaptation of mobile services.
• Currently, there are no standards for the sharing and the accounting of situation specific

information in mobile radio networks, that allow to transfer differentiated information
about the user anonymously.

Important research questions for the development and realization of situation dependent mobile
services are:

• Understanding the End-User’s Situation: How can an end-user’s situation be defined?
Which information about the end-user’s situation are relevant for situation dependent
mobile services? How can situations be classified, described, enriched and transferred?

• The Development and Usage Process: How could the lifecycle of a Situation Dependent
Mobile Service be described? What opportunities are connected in this lifecycle? For
Whom?

• Analysis of the End-User’s Acceptance: What about the end-user’s acceptance of
Situation Dependent Mobile Services? Which properties are important for the end-user?
How can the user be protected from becoming a transparent individual? How can this be
communicated to the end-user?

• Designing Cooperative Development: In which way should the interaction, the
information flow and the cooperation for service distribution work. Who plays which role?
How does the accounting work?

Silvia Berti
1

• Realization of Situation Dependent Mobile Services: What technical conditions have to
be considered? What kind of architecture is needed? Which cooperation partner has to
accomplish which technological task?

The balanced combination of these elements in a methodical framework is regarded to be
fundamentally important for the development of successful Situation Dependent Mobile
Services.

2 Understanding the End-User’s Situation
A situation concept should classify the mobile situation context and make the customer’s
situation context suitable for the cooperative providing of situation dependent services. A
situation can be distinguished into the measurable aspects of a user’s situation according to three
dimensions: Time, Place and Person. These dimensions correlate with the primary situation
determinants that are presently transmittable in mobile networks. Time and Place are the
common and most obvious dimensions that are easy to measure. The Person summarises all
measurable aspects of a person. It includes the identity and demographic information as well as
information about the specific behaviour. Depending on the scope of application this basic
classification can be extended (Amberg, Wehrmann, 2002).
The proposed situation concept (Amberg et al. 2002,1) is based on the idea that the adaptation of
a mobile service according to the customer’s situation context provides a real benefit and an
improved user experience. A mobile service that is able to access the context is much more able
to solve a problem efficiently and to provide a certain added value compared to a service without
this information.
The situation concept includes a three-step process to determine the user’s situation for a mobile
service:

• Determination: In a first step, the elementary situation information (called situation
determinants here) are measured. For the identification of a mobile customer in mobile
GSM networks the Mobile Subscriber International Subscriber Directory Number
(MSISDN) can be used. To calculate the position of the mobile terminal, there are network
or terminal based solutions. By merging this information with the world time, the end-
user’s local time can be calculated.

• Interpretation: On the basis of the situation determinants and by consulting additional
data sources, detailed information about the user’s situation is derived.

• Description: The derived knowledge about the user’s situation is then coded in a suitable
mark-up language.

3 The Development and Usage Process
The development and usage process describes the main
process steps for providing situation dependent mobile
services. The usage cycle (Amberg et al. 2002,1)
differentiates the following three basic (not disjunctive)
categories of services: Individualised Services are any kind
of user initiated services. They are adapted to the
individual customer’s needs. Proactive Services are
automatically generated services which are triggered by
special events. Evolutionary Services are services which
are updated and enhanced successively by continuous
analysis and evaluation. The main processes of an usage
cycle are:

• Detection of the Situation Determinants:
The Mobile Network Operator detects the
situation determinants. Objects of the
detection are position, time and user
identity.

Figure 1 - Usage Cyle for Situation Dependent Mobile Services

Silvia Berti
2

• Interpretation of the Situation Determinants: The Mobile Network Operator enriches
the information by consulting additional information sources.

• Transfer of the Situation Descriptions: The Mobile Network Operator encodes the
situation description and transfers it to the service provider. To ensure the privacy,
personal information is removed.

• Individualisation of Mobile Services: The service provider uses the situation description
for the individualisation of user initiated services (pull services). The individualisation of
mobile services is a tool for customer orientation and the manageability of services.

• Event Control in Mobile Services: The service provider can define situation based rules.
The Mobile Network Operator compares these rules with the situations. If a rule matches a
situation, a proactive service will be generated (push service). A great potential of mobile
services is the ubiquitous addressability of customers which is founded in the close
interconnection of customer and personal mobile device. This allows services to get
activated or initiated by a particular circumstance and enables active notification services.
Regarding the legal aspects and Godin’s permission marketing concept (1999), a complete
new dimension of services for customers and service providers is conceivable.

• Knowledge Generation in Mobile Services: Knowledge generation for mobile services
makes a long-term analysis, evaluation and extension of services possible. A service
provider may use the historical data about customer transactions and the respective user’s
situation as valuable sources for an evaluation of his mobile services. Thus he can
conclude the demographic properties, the regional allocation or many other attributes that
help to enhance or upgrade a service. Additional tools may further help the service
provider to better understand the intentions, purposes and the special needs of users in
special situations. An evaluation of services by the customer may help to identify wrong
adaptations. Depending on the success and the influencing factors, a service can be stopped
or advanced in an evolutionary style.

4 Analysis of the End-User’s Acceptance
Service providers can use an acceptance model to understand the reasons for the user’s
acceptance of existing mobile services ex post or to adapt the requirements for the service
development. The characteristics of this acceptance model should specifically focus on situation
dependent mobile services and the usability as a permanent controlling instrument for the
iteractive adaptation of services to the user’s requirements. The structure of the suggested
acceptance model (Amberg et al. 2003,1) is based on the principal idea of the Balanced
Scorecard (BSC) (Kaplan, Norton, 1996). Accordingly, the acceptance model uses a balanced
set of individually measurable acceptance criterions for the analysis and the evaluation of the
end-user’s acceptance. The balanced consideration of the criterions that are used for measuring
the user’s acceptance, leads to a more sophisticated evaluation.
We use the complementary categories benefits/costs and service/general conditions to structure
the acceptance model. The distinction between service specific acceptance and general
acceptance factors (general conditions of services) is derived from the model of Herrmann
(1999). There are four dimensions, that can be distinguished: Perceived Usefulness, Perceived
Ease of Use, Mobility and Costs. The first two dimensions Perceived Usefulness and Perceived
Ease of Use are taken from the Technology Acceptance Model TAM (Davis, 1989). The
Perceived Usefulness is an additional incentive to use a service. In opposition to this, the Ease Of
Use is an effort, which is an obstruction for the Usage of a service. Both dimensions describe the
service specific influencing factors of the acceptance of a service. The acceptance model extends
the TAM approach with two additional dimensions: Mobility and Costs. To regard the
influencing factors in more detail, a further refinement of the dimensions is recommended.
According to Kollmann (1998), the subdivision in First Use and (regular) Usage is reasonable.
The First Use is a kind of barrier for the Usage of a service. Both are necessary for a balanced
consideration of the user’s acceptance of mobile services. In addition to this, it is possible to

Silvia Berti
3

subdivide these eight criterions further on (e.g. in emotional/rational or qualitative/quantitative)
(Amberg et al. 2003,2).

5 Designing Cooperative Development
An interaction model describes the service and information relationships between the involved
participants. From a conceptual perspective of providing situation dependent mobile services,
three or four market participants can be differentiated. Information products are offered by the
service provider, procured by the Mobile Network Operator (MNO) and paid by the customer.
For physical products a logistic provider is involved for the physical transportation between
service provider and customer.
In the scope of the proposed interaction model (Amberg et al. 2002,2), the Mobile Network
Operator takes a major role as an intermediate between service provider, customer and if
necessary logistic provider. From the customer’s view he is the contact for all customer specific
concerns. He ensures the access to the mobile network, manages the personal settings and
profiles (e.g. privacy protection), receives and processes the user requests, transmits the
information products and is responsible for billing. From the service provider’s view he provides
a widespread service platform, which enables him to offer any service to the customer. The
resulting central role of the Mobile Network Operator is obvious. Consequently, aspects like
protection of privacy or data security have to meet high demands. Considering the security
aspects, the Mobile Network Operator has to establish himself as a trustable party, commonly
termed as Trusted Third Party (TTP). The authors consider emotional barriers to be very
important. Concepts to ensure and guarantee trustability are an important field of research.
The Mobile Network Operator is the only involved party, which has the infrastructure to measure
the situation determinants. This is an essential reason for being the only one who can handle the
interpretation and description of situations efficiently. The strict borders of data protection and
legal regulations (Enzmann, et al. 2000) on the one hand and the sensibility of customers
regarding their personal data on the other hand determine that the Mobile Network Operator
should only transfer anonymous situation descriptions. Most information products provided over
the platform of the Mobile Network Operator do not depend significantly on the user’s identity.
An implementable concept for ensuring the privacy is using alias or session-IDs instead of a
personal ID.

6 Realization of Situation Dependent Mobile Services
A convenient system architecture focuses on the implementation of the cooperation platform.
The situation description that is conveyed from the Mobile Network Operator to the service
provider normally contains a reference to the identity of the user. The type of reference depends
on the degree of intensity that characterises the relationship between the mobile customer and the
service provider (Amberg et al. 2002,2). The customer must have the choice to select the type of
reference that he wants to transmit to the service provider:

• Anonymity (e.g. Session-ID): The service provider only gets a weak reference that points
to the current data session of the customer. The customer-ID can not be resolved by the
service provider.

• Pseudonymity (e.g. X-ID or Nickname): The service provider receives a pseudonym for
the user that remains the same over all data sessions. Therefore, the service provider can
recognise a mobile customer without knowing his identity.

• Identity (e.g. MSISDN): The service provider gets access to the technical address of the
mobile terminal that enables him to resolve the customer’s identity.

7 Outlook
One future task is the refinement of the existing facets, that were shortly introduced in this paper
and the search for further aspects, that significantly affect Situation Dependent Mobile Services.
For the further design of these services the development of the mobile commerce market is very

Silvia Berti
4

important. According to the imminent global rollout of 3rd generation UMTS networks and later
4th generation applications, the identification and understanding of key success factors will play
an important role.

Literature
Amberg, M.; Figge, S.; Wehrmann, J. (2002,1): Compass – Ein Kooperationsmodell für situationsabhängige

mobile Dienste. In: Hampe, J. F.; Schwabe, G. (Hrsg.): Proceedings zur Teilkonferenz Mobile and Collaborative
Business der Multikonferenz Wirtschaftsinformatik (MKWI 2002), p. 31-50, Nürnberg, Germany.

Amberg, M.; Figge, S.; Wehrmann, J. (2002,2): A Cooperation Model for Personalized and Situation Dependent
Services in Mobile Networks: Proceedings of the International Workshop Conceptual Modeling Approaches to
Mobile Information System Development at the 21st International Conference on Conceptual Modeling
Proceedings (ER 2002), p. 13-24, Tampere, Finland.

Amberg, M.; Hirschmeier, M.; Wehrmann, J. (2003,1): Ein Modell zur Akzeptanzanalyse für die Entwicklung
situationsabhängiger mobiler Dienste im Compass Ansatz: Proceedings of the 3rd Workshop on Mobile
Commerce (MC3), Augsburg, Germany. (Accepted)

Amberg, M.; Hirschmeier, M.; Wehrmann, J. (2003,2): The Compass Acceptance Model for the
Analysis and Evaluation of Mobile Information Systems: International Journal for Mobile Communications
(IJMC), Finland. (Submitted)

Amberg, M.; Okujava, S.; Wehrmann, J. (2003,3): Ein Komponenten-Framework für die situationsabhängige
Adaption Web-Service-basierter Standardsoftware: Proceedings of the 5th Workshop Komponentenorientierter
Betrieblicher Anwendungssysteme (WKBA5), Augsburg, Germany. (Accepted)

Amberg, M.; Wehrmann, J. (2002): A Framework for the Classification of Situation Dependent Services:
Proceedings of the Eighth Americas Conference on Information Systems (AMCIS 2002), p. 1838-1843, Dallas,
USA.

Davis, F. D. (1989): Perceived Usefulness, Perceived Ease of Use, and User’s acceptance of Information
Technology, MIS Quarterly, 13:3 (8/1989), p. 319-341.

Enzmann, M; Pagnia, H.; Grimm, R. (2000): Das Teledienstedatenschutzgesetz und seine Umsetzung in der Praxis.
In: Koenig, W. (Hrsg.) Wirtschaftsinformatik 42, (5/2000), p. 402-412. Wiesbaden, Germany.

Godin, S.(1999): Permission Marketing: München, Germany.
Herrmann, T. (1999): Perspektiven der Medienwirtschaft. Kompetenz – Akzeptanz – Geschäftsfelder. In: Szyperski,

N. (Hrsg.): Perspektiven der Medienwirtschaft. Köln, Germany.
Kaplan, R.S.; Norton, D.P. (1996): The Balanced Scorecard – Translating Strategy into Action. Boston, USA.

Silvia Berti
5

Kollmann, T. (1998): Akzeptanz innovativer Nutzungsgüter und -
systeme : Konsequenzen für die Einführung von

Telekommunikations- und Multimediasystemen. Wiesbaden,
Germany.Biographical Notes

Michael Amberg, Jens Wehrmann

Friedrich-Alexander-University of Erlangen-Nuremberg, Department of Economics,

Chair for Business Information Systems III, Lange Gasse 20, 90403 Nuremberg, Germany,

email: amberg@wiso.uni-erlangen.de, jens.wehrmann@wiso.uni-erlangen.de

Michael Amberg
Professor Dr. Michael Amberg, born 1961, is the chair holder of the Business Information Systems III
department at the University of Erlangen-Nuremberg. Previously he headed the chair for Business
Information Systems at the technical university of Aachen (RWTH). The focus of his work is the
development and management of information technology (IT Management). The research interests are the
development and management of complex software and hardware components and their integration into
industrial processes. Further research topics cover multimedia, mobile information systems as well as
embedded intelligent systems.

Jens Wehrmann
Jens Wehrmann, born 1975, studied electrical engineering and business economics at the technical
university of Aachen (RWTH). He is working at the chair for Business Information Systems III since the
foundation in 2001. He is the manager of a research project to build an adaptive component based
standard software. His main research topics are situation depended applications, development of adaptive
software, mobile application management, mobile commerce and mobile architectures.

Silvia Berti
6

Personal Wizards: collaborative end-user programming

Lawrence Bergman, Tessa Lau, Vittorio Castelli, and Daniel Oblinger
IBM T.J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

+1 914 784 7946
bergmanl@us.ibm.com

INTRODUCTION
Users of computing systems follow procedures to
accomplish their goals. In some cases, where procedures
are dictated by an organization’s business process, users
must follow a prescribed sequence of steps to accomplish
tasks such as requesting travel reimbursement, procuring a
new workstation, or managing payroll for their employees.
Systems management administrators follow a different set
of best practice procedures for tasks such as configuring
and optimizing an organization’s email systems, and
diagnosing and repairing network problems. End users
accumulate their own personal collections of procedures for
accomplishing their own goals, such as monitoring stock
portfolios or collecting information for a presentation.
Despite the ubiquity of these procedures, however, current
systems provide little support for documenting or capturing
procedural knowledge. Printed manuals are expensive to
produce, and are often inadequate: it is hard to find what
you want, and difficult to use what you find. Infrequent
users of a procedure are often forced to make notes on
paper in order to remind themselves of the right sequence
of steps to complete a task. Yet no matter how often a user
completes a task, the system always requires the user to
perform the same rote actions over and over again. For
widespread business processes, the local IT department
may write software to automate these procedures, but these
programs are typically brittle and costly to upgrade when
the underlying process changes.
The vision of the Personal Wizards project is to
dynamically capture corporate and personal procedures
through cross-application programming by demonstration
[1,3]. The Personal Wizards system observes experts’
keystrokes and mouse actions as they perform a procedure
on the desktop. Experts may annotate the procedure at key
points, associating appropriate text with certain steps in the
procedure. The system then produces a Personal Wizard
that can guide a new user through a similar task, presenting
the right information at the right time, and automating
particularly repetitious steps in the procedure.
In designing the system, we are guided by the following
desiderata:
• Lowering the barriers to authoring procedural

knowledge
• Learning from multiple experts

• Collaborative exploration of all possible paths through
a procedure

• Creation of robust procedures with branches and
failure recovery

• Human-understandable procedures
Collaborative authoring is a central concept in our work.
Our vision is that many procedures will be created by
gathering information from a variety of experts. This has
several advantages:
• The procedure captures execution under a variety of

system configurations and working environments.
• The procedure captures variation in the ways in which

a task can be performed.
• The collaborative process facilitates identification of

operations that are relevant to a procedure, and those
that are peculiar to a user (such as frequent breaks to
read e-mail), without a need for manual labeling.

This paper presents our work on the Personal Wizards
project and situates it within the context of end-user
programming. We begin by outlining a number of concrete
scenarios where Personal Wizards could be applied.
USAGE SCENARIOS
In this section we present a set of scenarios intended to
illustrate some of the different ways in which the Personal
Wizards (PW) system might be used. Although one of the
goals of Personal Wizards (and end-user programming in
general) is to blur or remove the distinctions between
authors and consumers of procedures, we note that some
users of this system will be “expert users”. In fact, some
users will be explicitly charged with developing procedures
for use by others. For this reason, in the following set of
scenarios, we will use the term “expert” and “novice” to
distinguish these roles, pointing out where the two roles
may be interchangeable or merge.
Scenario 1: Technical support
In this scenario, we consider development and deployment
of procedures for troubleshooting failures in a technical
support environment. Desk-side support personnel will be
responsible for authoring of procedures, for example a
procedure that troubleshoots installation of a network card.
The support staff may train the PW system by deploying a
PW client on the desktop of a caller and “driving” it
remotely. During the troubleshooting session, or at a later

Silvia Berti
7

time, the support person may add annotations to the
procedure.
Once trained on a number of service calls, troubleshooting
procedures can be deployed electronically by support staff,
or made available automatically through websites. This
allows end-users to invoke the PW procedure in a novice
role, gaining access to an electronic troubleshooting
assistant. The Wizard will prompt for input as needed, and
guide the novice through the troubleshooting procedure.
The novice can choose to execute in a step-wise fashion, or
to allow the procedure to execute on its own, only pausing
when user-input is required.
We note that there will always be cases where the Wizard
will run into previously unencountered configurations. In
such cases, PW will notify the novice and suggest
consultation with user support. If the novice is able to
complete the procedure on their own, they will be
encouraged to submit their execution trace back to the
helpdesk, allowing the troubleshooting procedure to evolve.
In this case, the novice dynamically assumes the role of
expert.
Scenario 2: Software Debugging
Debugging a piece of software often involves elaborate
procedures that include: supplying the application with the
required inputs, examining and capturing key state
variables, and exercising control over the procedure –
stepping in and out of functions, setting and removing
breakpoints, etc. Often the same debugging procedure is
employed multiple times with only small variations in each
execution. We envision PW assisting with such repetitive
debugging tasks. In this case, the programmer assumes the
roles of both expert and novice.
Scenario 3: Desktop procedures
Use of computers in both home and business environments
involves a wide variety of repetitive tasks. These include
tasks such filing expense accounts, ordering supplies, and
reorganizing address books. In these scenarios, the same
user may play both expert and novice, first recording a
procedure then employing it again in the future to automate
or replay a similar task.
Scenario 5: Live Tutorials
Tutorials are traditionally document-based walkthroughs of
the set of steps required to accomplish a particular goal.
Recently, video-style tutorials, which show the sequence,
often by highlighting the controls of the application itself,
have become popular. These tutorials are typically hand-
scripted.
We envision the PW system being used to provide “live”
tutorials – showing the novice how a procedure is executed
by guiding him through the actual performance of the task.
PW enables rapid authoring of such tutorials; the author
simply demonstrates the procedure, supplying annotations
as desired. Furthermore, the tutorial readily adapts to
changes in the underlying procedure, since new
demonstrations are far easier to perform than manually
adjusting a script.

USER INTERFACE CHALLENGES
Several key issues must be addressed in the design of the
PW user interface. These include supporting mixed-
initiative control during training and execution of
procedures, providing support for annotation during
authoring, providing cues to the novice that indicate the
outcomes and implications of various pathways through a
PW procedure, and providing means for debugging a
procedure when it fails.
Control
The PW interface must provide for flexible changes of role
– at times the user may be authoring a procedure in the role
of expert, at other times using it as a novice. We want to
support the user in changing roles with as little overhead as
possible, allowing them to alternate between roles as
teacher and student. By observing when a novice changes
parameters, or deviates from the default procedure, and
adjusting the procedure accordingly, PW supports a
continuous authoring process, in which the procedure
evolves over time as it is used in new situations.
Furthermore, we will provide mechanisms for the user to
specify whether updates are local, or can be contributed to
procedures in a wider community.
Annotation
One way in which expert knowledge is easily
communicated from the expert to the novice is through
annotations. In the PW system, the expert provides
annotation associated with individual execution steps or
sets of steps as liberally as she deems appropriate. On
playback, the novice is presented with annotations, which
may indicate not only the required actions or inputs, but
also can provide information on the sub-procedure being
performed as well as the rationale for proceeding along
particular paths within a procedure.
Visualization
The ability for PW to communicate to the novice possible
actions that the procedure might take is critical. This is the
problem of procedure visualization. We anticipate
exploring a variety of procedure visualization alternatives.
Two main strategies for visualizing procedures make use of
spatial and of temporal sequencing of information. Spatial
arrangements include collapsible hierarchies and comic
strips (see [1] for an example of the latter). We will
explore extensions to each. Providing for expert
manipulation of hierarchical procedure/sub-procedure
structures may be an effective way for an expert to impart
knowledge of procedure structure, and for the novice to
examine that information. Comic strips have the
shortcoming of showing a linear path through a procedure.
We will extend this metaphor to show branch points and
permit the novice to interactively “scroll” through
alternatives at any branch point.
Temporal displays show a sequence of actions in time.
Procedure visualization can begin by highlighting the
control(s) to be activated at the current step. The user will
be able to examine the consequences of particular actions
by selecting the associated highlighted UI element in

Silvia Berti
8

“examine mode” and then “stepping through” the
procedure. This gives the novice the capability of “looking
ahead” in the procedure without actually executing it.
Debugging
Another important consideration in designing the PW
interface is providing methods for recovery and repair
when the procedure “goes wrong”. One possible approach
is to provide an “undo” for any operation. The novice is
much more likely to let PW “have its head” if she knows
that any incorrect actions can be easily undone.
RESEARCH CHALLENGES
This section outlines the technical research challenges we
have identified in learning end-user programs by
demonstration. Our general view is to approach
programming by demonstration as a machine learning
problem: acquiring generalized programs based on traces of
those programs’ execution behavior. The general problem
can be described in terms of several sub-problems.
Given a trace, the first problem is to segment the trace in
order to identify procedure and sub-procedure boundaries.
Traces must then be generalized in order to determine the
user’s intent in performing each of the concrete user
interface actions in the trace. Given several traces, the next
challenge is to simultaneously align portions of the traces
such that subsequences of similar functionality are paired
together. Underlying the alignment and generalization
process is a specific procedure representation that captures
the meaning of the procedure. Finally, a retrieval process is
needed for a user to index and locate a procedure in the
knowledge base that will assist in a particular task. The
following subsections briefly describe each of these
research challenges in turn.
Segmentation
The first research challenge is to segment the traces into
procedures and sub-procedures. In previous programming
by demonstration systems [5], the user manually indicates
the start and end of each demonstration. However, this may
prove to be too much of a burden for some users, who may
not realize that they have begun executing a repetitive task
until partway into the procedure. In addition, more
complex procedures are logically broken down into sub-
tasks, some of which may be common across multiple
procedures. For example, a procedure for diagnosing email
problems may include a sub-procedure for checking
whether the workstation is able to connect to the network.
Manually indicating the boundaries of each of these
subtasks is certainly going to require too much user effort.
Thus one research goal in our work is to consider
automated approaches to the segmentation problem.
Generalization
Generalization is the process of inferring a user’s intent
from a concrete trace. For instance, if the user clicks the
mouse button, she may be following a link in a web
browser, launching an application, or invoking a button. In
a subsequent demonstration of the same task, the mouse
click may occur at different coordinates, or the user may

use a keyboard equivalent to perform the same function.
Generalization of the two different actions (which both
have the same underlying intent) identifies the similarity
between the two actions. A generalized procedure is less
sensitive to the exact configuration and layout of a user’s
machine, and recognizes different possible ways to
accomplish the same goal.
Our approach to generalization is based on version space
algebra [2], a framework for efficiently enumerating the
space of possible generalizations for concrete actions, and
maintaining the set of consistent generalizations given one
or more examples of the target action.
Alignment
Our goal is to learn robust procedures from traces
generated by different experts or under different conditions.
In these cases, traces may contain steps in different order,
or traces in which a whole sequence of steps is missing
(perhaps because those steps are not applicable on a
particular system). The alignment problem is to recognize
and align together subsequences of similar functionality
across multiple traces. In our work, the similarity metric is
based on generalization; two actions are similar if they
share a common generalization. Our approach is based on
an extension to hidden Markov models [4], which provide a
mechanism for considering all possible alignments and
iteratively selecting the locally best alignment.
Procedure representation
One challenge in programming by demonstration is to
identify a sufficiently expressive yet tractable
representation of the procedure that will support the user
interface we wish to display to the user. Our work relies on
a representation of procedures as collections of executable
actions. Each action is modeled as a function that maps
from the state of the system to a new state in which some
action has been performed. These actions are joined
together into a procedure using a probabilistic finite state
machine representation. Each procedure execution is a
path through this graph, and the choices at each node in the
graph represent decisions made based on the information
visible on the user’s screen at that time. For example, a
procedure that specifies different actions to perform
depending on whether a previous step failed or succeeded
will examine the visible state (including the exit condition
of the previous step) in order to decide which steps to
follow next.
Retrieval
Learned procedures are only useful insofar as the user can
retrieve them again when they are needed. Our approach to
solving this research challenge involves the construction of
an indexed knowledge base of procedures. Procedures can
be indexed based on criteria such as the applications or
application screens used within each procedure, their
length, the time at which they were created or used
(imagine procedures for calculating income tax, which tend
to occur in early April), and keywords extracted from the

Silvia Berti
9

commands and user interface components involved in the
procedure.
Procedural dissemination can also be either implicit or
explicit. A novice can simply have PW running on their
machine at all times. At any point, the user can ask for
assistance and PW can examine the recently recorded set of
actions as the basis of a query, and retrieve procedures that
begin with similar steps. Alternately, PW can signal the
user that a procedure is available for a particular task based
on matching novice actions to the procedure library (of
course, great care must be taken to keep “suggestions” from
being obtrusive or annoying).
Explicit dissemination could be either based on either a pull
or a push model. A novice would pull a procedure from a
repository by formulating a request, perhaps in terms of a
set of goal keywords. Push-based dissemination would
include desk-side support emailing a procedure to a novice
to accomplish a particular task, such as a mandatory
upgrade.
EVALUATION STRATEGIES
A key question in end-user programming is how to evaluate
a system designed to assist end-users in their tasks. We
propose several metrics, each designed to evaluate a
different aspect of the system.
Learning efficiency: how much training does the system
require to learn a procedure that can accurately predict the
steps required to complete the task in a new situation?
Effort savings: how much effort does the system save a
user in a given task situation?
Usability: what kind of training is required to author
procedures in the system? Can regular end-users author
and consume procedure nuggets?

CONCLUSION
We have presented the Personal Wizards project, an end-
user programming system that acquires procedural
knowledge by observing experts perform tasks directly in a
user interface. We have outlined scenarios for which end-
user programming would be useful, described a user
interface for end user programming, characterized the
research problems involved in creating such a system, and
proposed strategies for evaluating the result.
REFERENCES
1. David Kurlander and Steven Feiner. A History-Based

Macro by Example System. In Proceedings of UIST'92,
pp. 99--106, 1992.

2. Tessa Lau, Pedro Domingos, and Daniel S. Weld.
Version space algebra and its application to
programming by demonstration. In Proceedings of the
Seventeenth International Conference on Machine
Learning, pp. 527-534, June 2000.

3. H. Lieberman, ed. Your Wish is My Command: Giving
Users the Power to Instruct their Software. Morgan
Kaufmann, 2001.

4. Lawrence R. Rabiner. A Tutorial on Hidden Markov
Models and Selected Applications in Speech
Recognition. Proceedings of the IEEE, 77(2):257-285,
February 1989.

5. Steven A. Wolfman, Tessa Lau, Pedro Domingos, and
Daniel S. Weld. Collaborative Interfaces for Learning
Tasks: SMARTedit Talks Back. In Proceedings of the
2001 Conference on Intelligent User Interfaces, 20

Silvia Berti
10

Biographical Notes

Lawrence Bergman has been a Research Staff Member at IBM T.J. Watson Research Center since 1994. His interests are in
tools and environments for design, query, and application development, with a particular emphasis on making computer
systems more accessible both to experts and novices. Currently he is involved in creating the Personal Wizards system, a
desktop programming-by-demonstration environment. From 2000-2002, he worked on developing environments and
techniques for model-based authoring of applications for deployment to multiple mobile platforms. From 1994-2000, he
worked on developing a novel interactive query interface to multimedia databases, used for applications in forestry,
petroleum exploration, space science, and epidemiology. He received his PhD in 1993 from the University of North Carolina
at Chapel Hill, where he developed a visualization environment demonstrated to provide flexible movement between user
and programmer roles. He is co-editor of the book “Image Databases”, and has been a member of the program committee for
several image retrieval and user-interface conferences.

Tessa Lau is a Research Staff Member at IBM’s T.J. Watson Research Center. Her interests are in improving the usability
and functionality of end-user interfaces through the application of innovative AI techniques. She completed her PhD at the
University of Washington in 2001, where she developed a machine learning framework for programming by demonstration,
and produced the SMARTedit system that automated repetitive text-editing tasks by example. Since joining IBM Research
she has played an active role in defining and building the Personal Wizards system, drawing on prior experience in the field
to further the vision of bringing end-user programming to the desktop

Silvia Berti
11

Software Engineering for End-User Programmers

Margaret Burnett, Gregg Rothermel, and Curtis Cook
Department of Computer Science

Oregon State University
Corvallis, OR 97331

(541)737-3273
{burnett, grother, cook}@cs.orst.edu

INTRODUCTION
There has been considerable work in empowering end users
to be able to write their own programs, and as a result, end
users are indeed doing so. In fact, the number of end-user
programmers is expected to reach 55 million by 2005 in the
U.S. alone [2], writing programs using such devices as
special-purpose scripting languages, multimedia and web
authoring languages, and spreadsheets. Unfortunately,
evidence from the spreadsheet paradigm, the most widely
used of the end-user programming languages, abounds that
end-user programmers are extremely prone to errors [15].
This problem is serious, because although some end users’
programs are simply explorations and scratch pad calcula-
tions, others can be quite important to their personal or
business livelihood, such as for calculating income taxes, e-
commerce web pages, and financial forecasting.

We would like to help reduce the error rate in the end-user
programs that are important to the user. Although classical
software engineering methodologies are not a panacea,
there are several that are known to help reduce program-
ming errors, and it would be useful to incorporate some of
those successes in end-user programming. Toward this end,
we have been working on a vision we callend-user soft-
ware engineering, a holistic approach to the facets of soft-
ware development in which end users engage. Its goal is to
bring some of the gains from the software engineering
community to end-user programming environments,without
requiring training or even interest in traditional software
engineering techniques.

RESEARCH UPON WHICH END-USER SOFTWARE
ENGINEERING BUILDS
Our research into end-user software engineering draws from
previous research in three areas: HCI, programming
languages, and software engineering.

Programming is a collection of problem-solving activities,
and our goal is to help end users in these activities. Hence,
we draw heavily on HCI research about human problem-
solving needs. The HCI research with the greatest influence
on our work so far has been Blackwell’s theory of Attention
Investment [1], Green et al.’s work on Cognitive
Dimensions [7], Pane et al.’s empirical work [14], and
psychologists’ findings about how curiosity relates to
problem-solving behavior [12]. Other strong influences
have come from the extensive work on end-user and visual

programming languages (e.g., [11, 13, 18]), and the
software engineering research community’s work regarding
testing, assertions, and fault localization (e.g., [8, 10, 16,
19]).

COMPONENTS OF END-USER SOFTWARE
ENGINEERING
End-user software engineering is a highly integrated and
incremental concept of software engineering support for
end users. Hence, its components are not individual tools,
each with a button that can be separately invoked, but rather
a blend of knowledge sources that come together
seamlessly. A continually evolving prototype of the end-
user software engineering concept exists for Forms/3 [5], a
member of the spreadsheet paradigm. The components we
have so far blended into Forms/3 are briefly summarized in
this section.

WYSIWYT Testing
One of the components is the “What You See Is What You
Test” (WYSIWYT) methodology for testing [20, 21, 3].
WYSIWYT allows users to incrementally edit, test and
debug their formulas as their programs evolve, visually
calling users’ attention to untested cells by painting their
cell borders red (light gray in this paper). Tested cells are
painted blue (black), and partial testedness is depicted in
purples (grays) along the continuum from red to blue (light
gray to black). For example, in Figure 1, cell WDay_Hrs is
not tested. Whenever the user notices that a cell’s value is
correct, he or she checks it off in the checkbox in its corner,
increasing the testedness. Empirical work has shown that
the WYSIWYT methodology is helpful to users [9] but,
even with additional visual devices such as colored arrows
between formula subexpressions to indicate the
relationships remaining to be covered, after doing a certain
amount of testing, users sometimes find it difficult to think
of suitable test values that will cover the as-yet-untested
relationships. At this point, they can invoke a “Help Me
Test” feature.

Help Me Test
The “Help Me Test” (HMT) feature [6] suggests test values
for user-selected cells or user-selected dataflow arrows.
HMT then tries to find inputs that will lead to coverage of
an untested portion of the user’s selections, or of any cell in
the program if the user does not have any cells or arrows
selected. HMT cannot always find a suitable test case, but

Silvia Berti
12

in performance experiments it has succeeded in less than 4
seconds approximately 90% of the time [6]. There is also a
Stop button available, if HMT is deemed as taking too long.

HMT’s efforts to find suitable test values are somewhat
transparent to the user—that is, they can see the values it is
considering spinning by. The transparency of its behavior
turns out to contribute to the understandability of both
HMT and assertions.

Assertions
There is an assertion feature [4, 22] in the environment.
(Our system terms these “guards” when communicating
with users, so named because they guard the correctness of
the cells.) Assertions protect cells from “bad” values, i.e.,
from values that disagree with the assertion(s). Whenever a
user enters an assertion (auser-entered assertion) it is
propagated through formulas creatingcomputer-generated
assertionson downstream cells. The user can use tabs (not
shown) to pop up the assertions, as has been done on all
cells in Figure 1. The stick figure icons on cells Monday,
Tuesday, ... identify the user-entered assertions. The
computer icon, on cell WDay_Hrs, identifies a computer-
generated assertion, which the system generated by
propagating the assertions from Monday, Tuesday, …,
through WDay_Hrs’s formula. A cell with both a computer-
generated and user-entered assertion is in a conflict state
(has anassertion conflict) if the two assertions do not match
exactly. The system communicates an assertion conflict by
circling the conflicting assertions in red. In Figure 1 the
conflict on WDay_Hrs is due to an error in the formula
(there is an extra Tuesday). Since the cell’s value in
WDay_Hrs is inconsistent with the assertions on that cell
(termed avalue violation), the value is also circled.

Users have two concrete syntaxes for entering assertions
onto a cell: one textual, and one primarily graphical.
Examples of the textual syntax are in Figure 1. Or-
assertions are represented with comma separators on the
same line (not shown), while and-assertions are represented
as multiple assertions stacked up on the same cell, as with

cell WDay_Hrs. (And-assertions must always agree.) It is
possible to omit either endpoint from a range, allowing for
relationships such as <, <=, and so on. Further information
on the relationships supported, the assertions’ relative
power, and the graphical syntax can be found in [4]. Also
reported in [4] is an empirical study, which resulted in
participants using provided assertions being significantly
more effective at debugging than were participants without
access to assertions.

HMT Assertions
To entice users to consider entering assertions, we use a
strategy based on findings about the psychology of curiosity
[12]. We term our strategy theSurprise-Explain-Reward
strategy [22]. The first step of our strategy is to generate a
meaningful surprise for the user. That is, the system needs
to violate the user’s assumptions about their program. We
have devised a pseudo-assertion for this purpose, termed an
HMT assertionbecause it is produced by HMT. An HMT
assertion is a guess at a possible assertion for a particular
cell.

HMT assertions exist to surprise and thereby to create
curiosity. Consider Figure 1 and Figure 2, which are part of
a weekly payroll program. The user may expect values for
Monday to range from 0 to 8, and rightly so, because
employees cannot be credited with fewer than 0 or more
than 8 hours per day. Since HMT was not aware of this, it
attempted inputs less than zero. Thus, the HMT assertion
for Monday probably violates the user’s assumptions about
the correct values for Monday.

Once an HMT assertion has been generated, it behaves as
any assertion does. Not only does it propagate, but if a
value arrives that violates it, the value is circled in red.

It is important to note that, although our strategy rests on
surprise, it does not attempt to rearrange the user’s work
priorities by requiring users to do anything about the sur-
prises. No dialog boxes are presented and there are no
modes. HMT assertions are a passive feedback system; they

Figure 1: The Forms/3 environment. Cell formulas can be displayed via the tab at the lower right hand side of the cell, as has
been done in WDay_Hrs. Additionally, cells with non-constant formulas have borders colored depicting “testedness” and a

check box, as shown with a “?” in it, in the right hand corner of the WDay_Hrs cell.

Silvia Berti
13

try to win user attention but do not require it. If users
choose to follow up, they can mouse over the assertions to
receive an explanation, which explicitly mentions the
rewards for pursuing assertions. More information about the
surprises, explanations, and rewards will be presented at
CHI’03 [22].

Fault Localization
Given the explicit, visualization-based support for
WYSIWYT testing, it is natural to consider leveraging it to
help users with fault localization once one of their tests
reveals a failure. But what is the best way to proceed? We
began with a particular approach [17], but have since
devised two other approaches for reasoning about where the
faulty cells might lie. We are currently conducting a variety
of empirical work to see which is the most effective, given
the testing end-user programmers actually do.

CONCLUDING REMARKS
Most researchers working on end-user programming are
working on exactly that—programming. Our view is that
giving end-user programmers ways to easily create their
own programs is important, but is not enough. We believe
that, like their counterparts in the world of professional
programming, end-user programmers need support for other
aspects of the software lifecycle. Supporting software
development activities beyond the programming stage—
without requiring end users to invest in software
engineering training—is the essence of the end-user
software engineering vision.

ACKNOWLEDGMENTS
This work was supported in part by NSF under ITR-
0082265.

REFERENCES
1. Blackwell, A. and Green, T. R. G. Investment of

attention as an analytic approach to cognitive
dimensions. In T. Green, R. Abdullah & P. Brna (Eds.)
Collected Papers Wkshp. Psych. of Programming
Interest Grp., (1999), 24-35.

2. Boehm, B., Abts, C., A. Brown, W., Chulani, S., Clark,
B., Horowitz, E., Madachy, R., Reifer, J., and Steece, B.
Software Cost Estimation with COCOMO II.Prentice
Hall PTR, Upper Saddle River, NJ, 2000.

3. Burnett, M., Sheretov, A., Ren, B., and Rothermel, G.
Testing homogeneous spreadsheet grids with the 'What
You See Is What You Test' methodology,IEEE Trans.
Software Engineering, (May 2002), 576-594.

4. Burnett, M., Cook, C., Pendse, O., Rothermel, G., and
Summet, J., and Wallace, C. End-user software
engineering with assertions in the spreadsheet paradigm,
Int’l. Conf. Software Engineering(Portland, OR, May
2003), to appear.

5. Burnett, M., Atwood, J., Djang, R., Gottfried, H.,
Reichwein, J., Yang, S. Forms/3: a first-order visual
language to explore the boundaries of the spreadsheet
paradigm.J. Functional Programming 11, 2 (March
2001) 155-206.

6. Fisher, M., Cao, M., Rothermel, G., Cook, C., Burnett,
M. Automated test generation for spreadsheets,Int.
Conf. Software Engineering, (Orlando FL, May 2002),
IEEE 141-151.

7. Green, T. R. G. and Petre, M. Usability analysis of
visual programming environments: a ‘cognitive
dimensions’ framework.J. Visual Languages and
Computing 7, 2 (June 1996), 131-174.

8. Jones, J.A., Harrold, M.J., and Stasko, J. Visualization
of test information to assist fault localization.Int. Conf.
Software Engineering, (May 2002), 467-477.

9. Krishna, V., Cook, C., Keller, D., Cantrell, J., Wallace,
C., Burnett, M., and Rothermel, G. Incorporating
incremental validation and impact analysis into
spreadsheet maintenance: an empirical study, inProc.
Software Maintenance, (Florence Italy, Nov. 2001),
IEEE, 72-81.

10. Laski, J. and Korel, B. A data flow oriented program
testing strategy.IEEE Trans. Soft. Eng. 9, 3 (May
1993), 347-354.

11. Lieberman, H.Your Wish Is My Command: Program-
ming by Example. Morgan Kaufmann, San Francisco,
2001.

12. Lowenstein, G. The psychology of curiosity.
Psychological Bulletin 116, 1 (1994), 75-98.

13. Nardi, B. A Small Matter of Programming: Perspec-
tives on End-User Computing, MIT Press, Cambridge,
MA, 1993.

14. Pane, J., Myers, B., and Miller, L. Using HCI
Techniques to Design a More Useable Programming
System, in Proceedings Human-Centric Computing
2002(Arlington VA, September 2002), 198-206.

15. Panko, R. What we know about spreadsheet errors.J.
End User Computing, (Spring 1998).

16. Rapps, S., and Weyuker, E.J. Selected software test data
using data flow information.IEEE Trans. Soft.Eng. 11,
4 (Apr. 1985), 367-375.

17. Reichwein, J., Rothermel, G., and Burnett, M. Slicing
spreadsheets: An integrated methodology for
spreadsheet testing and debugging.2nd Conf. Domain
Specific Languages,(Oct. 1999), 25-38.

18. Repenning, A. and Ioannidou, A. Behavior processors:
layers between end-users and Java virtual machines,
1997 IEEE Symposium on Visual Languages, (Capri,
Italy, September 1997), 402-409.

19. Rosenblum, D. A practical approach to programming
with assertions.IEEE Trans. Soft. Eng. 21,1 (Jan.
1995), 19-31.

20. Rothermel, G., Li, L., DuPuis, C. and Burnett, M. What

Figure 2: HMT has guessed assertions for the input cells
(top row). (Since HMT changed the values of the input
cells, they are highlighted with a thicker border.) The

guesses then propagated through WDay_Hrs’s formula to
create an HMT assertion for that cell as well.

Silvia Berti
14

you see is what you test: a methodology for testing
form-based visual programs, inProc. ICSE ‘98, (Kyoto
Japan, Apr. 1998), IEEE, 198-207.

21. Rothermel, G., Burnett, M., Li, L., DuPuis, C., and
Sheretov, A. A methodology for testing spreadsheets,
ACM Trans. Software Engineering and Methodology
10,1 (Jan. 2001), 110-147.

22. Wilson, A., Burnett, M., Beckwith, L., Granatir, O.,
Casburn, L., Cook, C., Durham, M., and Rothermel, G.,
Harnessing curiosity to increase correctness in end-user
programming, InProc. CHI ’03, (Ft. Lauderdale, FL,
April 2003), ACM Press, to appear.

Silvia Berti
15

End-User Programmers Need Improved

Development Support

David A. Carr
Institutionen för Systemteknik

Luleå Tekniska Universitet
SE-971 87 Luleå, Sweden

+46 920 49 19 65
david@sm.luth.se

ABSTRACT
This paper argues that end-user programming systems need
to support “professional” programming-language functions
such as: program understanding, reuse, and automated error
checking. We illustrate how these functions can be incorpo-
rated into an end-user programming system by describing
the design of ReMIND+, an end-user programming system
for modeling and optimizing industrial processes.

Keywords
End-user programming, visual programming

INTRODUCTION
End-user programming systems have been in common use
since VisiCalc appeared. Research on end-user and novice
programming has concentrated on individual problem solv-
ing and trying to understand the programming process. For
example, Pane, et. al. [5] studied how non-programmers
(primarily children) formulate solutions to programming
problems when they had no programming language. The
idea was to compare “natural” solution formulations to
those used in current programming languages. Large differ-
ences between current language construction and novice
descriptions were found, particularly in the areas of condi-
tional clauses and looping constructs. This led Pane to sug-
gest that end-user language designers should abandon cur-
rent programming languages as a model. They should base
their languages on novice perceptions of how looping and
conditionals work in order to reduce the cognitive distance
between the novice’s mental model of the solution and its
expression in a programming language.

Another trend has been the use of visual programming lan-
guages. Advocates of visual programming such as Shu [6]
claim that it is the solution to the end-user programming
problem. However, our own work [2] suggests that finding
representations closer to the problem domain is more im-
portant. Another aspect that seems to have significant ef-
fects is how well the language supports human cognition.
Indeed, the Cognitive Dimensions Framework [1] has been
developed to assist visual language designers in evaluating
how well their system supports human cognition.

Current commercial tools seem to assume that end-users
construct programs individually. However, studies of actual

users show otherwise. For example, spreadsheet users work
in groups [3]. The group as a whole takes responsibility for
debugging and revision. Group members also share spread-
sheets, fragments, and techniques. Spreadsheets live over
long periods of time. They are updated to reflect new prac-
tices. In many ways, end-user programs are no different
than “professionally” developed programs. We believe that
end-users would benefit from more careful attention to fea-
tures that aid professional program developers such as pro-
gram understanding, reuse, and automated error checking.

For example, spreadsheets use a model where the program
elements (formulas and macros) are hidden by the data dis-
play. This model is the strength of the paradigm. However,
it makes it extremely difficult for an end-user to understand
the computation that is actually performed. In the domain of
multimedia presenters, systems such as Macromedia
Flash™ [7] divide the program into small fragments that are
attached to objects and timeline instants. This makes con-
struction of the movie (program) simpler, but at the same
time it makes it nearly impossible to gain an overview of
what the movie does and how it does it.

We are not arguing that the basic programming method and
model of either system should change, but rather that extra
functions are necessary to support the development of end-
user programs as long-lived tools for business.

The rest of this paper discusses the support that we feel is
necessary for end-user programming and describes re-
MIND+, a proposed design of an end-user programming
system. reMIND+ will replace an existing application used
by industrial engineers to model and optimize manufactur-
ing processes.

SOFTWARE DEVELOPMENT SUPPORT
During the last 40 years programming languages and tools
have evolved to support the professional software devel-
oper. We have learned that much of software development
is maintenance. Maintenance is usually preformed long
after the original coding by someone unfamiliar with the
system. It has been clear for years that programming lan-
guages and methods must support reading to gain an under-
standing of the program. Software engineers have devel-
oped methods of design and documentation (e.g., UML)

Silvia Berti
16

that provide an overview of a system and facilitate under-
standing how different components work together. Lan-
guage constructs such as objects and functions also help
program understanding by hiding details until they are nec-
essary. End-user programming systems usually facilitate
ease of programming by embedding small code fragments
within an application’s structure. They encourage incre-
mental construction and leave documenting the “bigger
picture” to the user. However, end-users by definition lack
the training to do this. We feel that end-user systems need
to be designed so that constructing the bigger picture is
natural or that it can be automatically generated by the sys-
tem.

Because system development is expensive, elaborate strate-
gies for reusing fragments have evolved. These include
object-oriented programming, object and function libraries,
and message-based architectures. End-user systems gener-
ally lack these facilities. However, we do not feel that end-
users will want the complication that most of these tech-
niques bring. We believe that user extendable libraries
would be useful and believe that systems should support
simple ways to extract parts of an end-user system to be
saved for reuse in a library.

A final area where professional programming languages are
designed to reduce errors is in automatic consistency check-
ing such as type systems. End-user programming systems
usually avoid type schemes; however, type checking pro-
vides real benefit in reducing programming errors. We be-
lieve that where users provide type information, it should be
used to check program reasonableness. For example,
spreadsheet users often implicitly type spreadsheet cells by
declaring an output format. A spreadsheet could easily
check for conflicting types in a formula. Adding a percent-
age to a currency value is probably an error. Warning the
end-user could well save debugging time or prevent the use
of an incorrect result.

reMIND+, AN EXAMPLE
reMIND+ is a redesign of the reMIND system to convert it
into an end-user programming system. The reMIND system
is designed for industrial engineers who wish to model and
optimize use of resources in industrial process. reMIND is
itself a revision of an earlier system called MIND (Method
for analysis of INDustrial energy systems). MIND [4] uses
a model of resource flows into processes that use or trans-
form the resources. The processes produce new resources
that can be finished products or used in other processes.
MIND used a text language to describe the flows and proc-
esses. The engineer also provided a set of linear constraints
on the process model. These were then transformed into
input for a commercial linear-system solver, CPLEX, and
CPLEX provided an optimal solution for the system of lin-
ear equations and inequalities. A problem with MIND was
that the text language made it difficult to trace errors with
connecting flows and processes. So, the system was revised
to add a graphical flow diagram editor and reMIND was

born. (See Figure 1.) However, there are certain limits to
reMIND that still make it difficult to use.

• Foremost is the design of the nodes. Nodes are of spe-
cific types and are defined by the Java code of the re-
MIND application. If a current node type does not fit
user requirements, then a programmer must be hired to
insert a new node type into the program.

• Another problem is that reMIND has a flat, monolithic
structure. There is no easy way to reuse parts of models.
Furthermore, a model’s graphical representation rapidly
exceeds the screen size, making it difficult to gain an
overview.

• Finally, reMIND does not support any type checking on
the flows. This can lead to mistakes were a flow repre-
senting energy is connected to an input representing a
raw material such as iron ore.

The Design of reMIND+
In order to correct the above problems, we are redesigning
reMIND and converting it to an end-user programming sys-
tem. reMIND+ will retain the flow diagram of reMIND
because the users find it much easier to use than MIND’s
text language. However, we will introduce the concept of a
“submodel”. A submodel will be a collection of processes
(nodes) and flows (links between nodes) that will permit
users to construct abstractions consisting of partial models.

We do not believe that end-users will want to consciously
plan submodels. So, reMIND+ will allow them to extract
them from existing models by selecting nodes. The system
will then extract the selected nodes plus their incoming and
outgoing flows. The flows will be traced back to their
source and those with a common source merged. The entire
submodel will then become a super node, which can be
manipulated as a single entity. Submodels will also be
added to a library for further reuse. Finally, reMIND+ will
support semantic zooming on nodes in the flow diagram.

Figure 1: A reMIND flow diagram.

Silvia Berti
17

Thus, a submodel can be viewed as just a node or expanded
to reveal its details.

The current multiple node types will be replaced with a
single node. The end-user will define the incoming and out-
going flows when creating a node. The system will then
produce a structured form similar to a spreadsheet with the
incoming and outgoing flows already in cells. The form will
provide cells for defining intermediate calculations and for
specifying the transformation of incoming flows to outgoing
flows. In this way, we hope to avoid the need to hire outside
programmers each time a new node type is required. In ad-
dition, simple nodes can also be placed in a library.

MIND and its descendents model industrial processes as
resource transformations and flows in a node-link diagram.
Therefore, it is quite easy to connect the wrong resource
(flow) into a transformation (node). In order to detect this,
we will experiment with specifying resource types. We en-
vision a “resource class” based system. For example, a
transformation may require an energy resource. The model
may provide for electricity, natural gas, or oil as possible
energy resources. Any of these would be acceptable and
could be converted to energy by the system. The system
will also support a generic flow, which will be a member of
all resource classes so that users may avoid the complexities
of resource types.

Support for Program Understanding in reMIND+
reMIND+ is based on a hierarchical flow diagram with a
semantically zooming browser. The end-user will be able to
hide details and view the model at the subsystem level. This
will provide an overview of the model. The end-user can
also reveal the details of a submodel in order to understand
it more fully. We also plan to introduce the ability to more
descriptively name flows and specify their resource class.

Support for Reuse in reMIND+
The chief shortcoming of the reMIND system is that all
models are flat and effectively monolithic. This means that
copying an entire model and modifying it is the only practi-
cal means of reuse. reMIND+ introduces the concept of a
submodel both as a abstraction and as a unit for reuse and
sharing. It will support libraries as a repository for submod-
els. Finally, individual nodes may be described and depos-
ited in a library permitting reuse of common, simple trans-
formations.

Automated Error Checking
Error checking in reMIND was limited to verifying that
each input to a transformation was connected and that each

output from a transformation was connected. reMIND+ will
add the ability to check resource type match as well. In or-
der to reduce the burden for the end-user, we also anticipate
the need to automatically convert units such as liters of oil
to joules.

CONCLUSION
While much progress has been made in the design of end-
user programming systems we feel that improvements need
to be made in support for long-term system development.
Some of these improvements can be borrowed from profes-
sional software development and adapted to end-user sys-
tems.

REFERENCES
1 Green, T. R. G. and Petre, M. Usability analysis of vis-

ual programming environments: a 'cognitive dimensions'
framework. Journal of Visual Languages and Comput-
ing, 7, 2 (June 1996) 131-174.

2 Moström, J. E. and D. Carr, Programming Paradigms
and Program Comprehension by Novices, Proceedings
of the 10th Annual Workshop of the Psychology of Pro-
grammers Interest Group (PPIG'98), Milton Keynes,
UK. Jan. 1998, 117-127.

3 Nardi, B. A. and Miller, J. R. Twinkling lights and
nested loops: distributed problem solving and spread-
sheet development. Readings in Groupware and Com-
puter-Supported Cooperative Work: Assisting Human-
Human Collaboration, Morgan Kaufmann., 1993, 260-
271.

4 Nilsson, K. Cost-effective Industrial Energy Systems.
Linköping University, Dissertation #315, 1993, ISBN
91-7871-156-8, ISSN 0345-7524.

5 Pane, J. F., Ratanamahatana, C. A., and Myers, B. A.
Studying the language and structure in non-
programmers’ solutions to programming problems. In-
ternational Journal of Human-Computer Studies, 54, 2
(Feb. 2001) 237–264.

6 Shu, N. C. Visual Programming Languages: A perspec-
tive and a dimensional analysis. Visual Programming
Environments: Paradigms and Systems, E. P. Glinert,
Ed., IEEE Computer Society Press, 1990, 41-58.

7 Macromedia. Macromedia Flash MX, http://www. mac-
romedia.com/software/flash/, visited 2003-01-14.

Silvia Berti
18

Software Shaping Workshops:

Environments to Support End-User Development

M.F. Costabile, A. Piccinno

Dipartimento di Informatica

Università di Bari

 70125 Bari, Italy

+39 080 544 3300

{costabile, piccinno}@di.uniba.it

D. Fogli, P. Mussio

Dipartimento di Elettronica per l’Automazione

Università di Brescia

25123 Brescia, Italy

+39 030 3715450

{fogli, mussio}@ing.unibs.it

ABSTRACT

In the Information Society, end-users keep increasing very

fast in number, as well as in their demand with respect to

the activities they would like to perform with computer

environments, without being obliged to become computer

specialists. There is a strong request of providing end-users

with powerful and flexible environments, tailorable to the

culture, skills and needs of very diverse end-user

population. In this paper, we discuss a framework for End-

User Development (EUD) and present our current work to

design environments that support the activities of domain-

expert users, with the objective of easing the way these

users work with computers. Such environments are called

workshops in analogy to artisan workshops since they

provide users with the tools, organized on a bench, that are

necessary to accomplish their specific activities by properly

“shaping” software artifacts.

Keywords

End-User Development, Domain-Expert Users, Software

Environments.

INTRODUCTION AND MOTIVATION

The development of computer systems that provide

accessibility and high quality of interaction to their end-

users is the big challenge we face in the information society.

Following the definition of Cypher, end-user is a person

who uses a computer application as part of daily life or

daily work, but is not interested in computers per se [13]. In

accordance with [8], we recognize that most end-users are

experts in a specific domain, not necessarily experts in

computer science, who use computer environments to

perform their daily tasks. Our work primarily addresses the

development of software environments and tools, which

supports such domain-expert users.

In [12] we have analyzed the needs of domain-expert users;

it appears that they are very demanding with respects to the

software they use, they are willing to carry out activities of

End-User Development (EUD), meaning by EUD the

possibility of modification and even creation of software

artifacts, in order to tailor the software to the users’ real

needs.

Several phenomena contribute to the current difficulty of

user-system interaction. Some of these are described in the

following:

• Communicational gap between designers and users

[17][2]. This phenomenon is related with the variety and

complexity of the knowledge involved in interactive

system design, which pose a serious problem of

knowledge elicitation and sharing. The communicational

gap arises from the fact that designers and users have

different cultural backgrounds, and, as a consequence,

detain distinct types of knowledge and follow different

approaches and reasoning strategies to modeling,

performing and documenting the tasks to be carried out in

a given application domain. Because of the

communicational gap, the interactive system usually

reflects the culture, skill and articulatory abilities of the

designer. Users find often hurdles in mapping the

interactive tools into their specific culture, skill and

articulatory abilities. Users may be unable to follow their

own solving strategies during the interaction process.

• User diversity. As highlighted in [9], hurdles arise in

designing interactive systems because of user diversity

even within a same population. Such diversity depends

not only on user skill, culture, knowledge, but also on

specific abilities (physical and/or cognitive), tasks and

context of activity. As a consequence, specialized user

dialects stem from user diversity [11], rising from the

existence of users sub-communities which develop

peculiar abilities, knowledge and notations, e.g. for the

execution of specialized subtasks. If, during system

design, this phenomenon is not taken into account, some

users may be forced to adopt specific dialects related with

the domain but different from their own and possibly not

fully understandable, making difficult the interaction

process.

• Co-evolution of systems and users [10] [2]. It is well

known that “using the system changes the users, and as

they change they will use the system in new ways” [19].

Silvia Berti
19

These new uses of the system make the environment

evolve, and force to adapt the system to the evolved user

and environment. This phenomenon is called co-evolution

of system, environment and users [7]. Designers are

traditionally in charge of managing the evolution of the

system. This activity is made difficult by the

communicational gap.

• Grain. Every tool is often suited to specific strategies

in achieving a given task. Users are induced by the tool to

follow strategies that are apparently easily executable, but

that may be non optimal. This is called “grain” in [14],

i.e. the tendency to push the users towards certain

behaviors. Interactive systems tend to impose their grain

to users resolution strategies, a grain often not amenable

to user reasoning, and possibly even misleading for them

[14].

 As defined in [21], the requirement of universal access

implies accessibility, usability, and acceptability of

Information Society Technologies by anyone, anywhere,

anytime, thus enabling equitable access and active

participation of potentially all citizens in existing and

emerging computer-mediated human activities. Our view of

universal design does not imply that a single user interface

is suitable for all users. Instead, as designers we put effort

in proposing solutions tailored to the needs of different user

populations. It is important to achieve a right balance

between adaptability and adaptivity. Adaptability calls for a

system flexibility that allows users to perform modifications

performed by users that may go from simple

parameterizations to more complex EUD activities [12]. On

the other hand, adaptivity calls for a system capable of

monitoring users’ behavior and other contextual properties,

like the current task or situation, and use different

approaches to automatically adapt itself, for the benefits of

users. Such concepts were addressed at a recent Workshop

of EUD-Net [15].

Because of their different cultural backgrounds, designers

and users may adopt different approaches to abstraction,

since, for instance they may have different notions about the

details that can be abstracted away. Moreover, users reason

heuristically rather than algorithmically, using examples

and analogies rather than deductive abstract tools,

documenting activities, prescriptions, and results through

their own developed notations. These notations are not

defined according to computer science formalisms but they

are concrete and situated in the specific context, in that they

are based on icons, symbols and words that resemble and

schematise the tools and the entities which are to be

operated in the working environment. Such notations

emerge from users’ practical experiences in their specific

domain of activity [17][14]. They highlight those kinds of

information users consider important for achieving their

tasks, even at the expense of obscuring other kinds [20],

and facilitate the heuristic problem solving strategies,

adopted in the specific user community.

A system acceptable by its users should have a gentle slop

of complexity: this means it avoids big steps in complexity

and keeps a reasonable trade-off between ease-of-use and

expressiveness. Systems might offer for example different

levels of complexities, going from simply setting

parameters, to integrating existing components, up to

extending the system by programming new components

[15]. To feel comfortable, users should work at any time

with a system suitable to their specific needs, knowledge,

and task to perform. To keep the system easy to learn and

easy to work with, only a limited number of functionalities

should be available at a certain time to the users, those that

they really need and are able to understand and use. The

system should then evolve with the users, thus offering

them new functionalities only when needed.

The problem of managing user culture and co-evolutive

design is growing in importance because the WWW

technologies allow users of different cultures to share data

and knowledge, and to collaborate in real time to perform

common tasks. We are currently refining a design

methodology that faces the challenges posed by the four

phenomena presented above [18], [11]. It is described in the

next section.

SOFTWARE SHAPING WORKSHOPS

The aim of the design methodology we are developing is to

design multimedia and multimodal environments that

support the activities of domain-expert users, with the

objective of easing the way these users program and interact

with computers. The design methodology is collaborative in

that, by recognizing that users are experts in their domain of

activity, it requires that representatives of the users

collaborate to the development of the system as domain

experts, in a team with HCI experts and software experts.

Moreover, the team of designers, including domain experts,

is in charge of driving the co-evolution of the system.

Recognizing users as domain experts means recognizing the

importance of their notations and dialects as reasoning and

communication tools. Moreover, with the aim of increasing

the closeness between programming and problems worlds

[16], our design methodology adopts users’ notations as

core for the development of the language used for user-

system interaction [6]. Adopting users’ notation also

supports the team of designers in identifying the grain

problems and in defining their solutions.

In scientific and technological communities, such as

mechanical engineers, geologists, physicians, experts often

work in a team to perform a common task. The team might

be composed by members of different sub-communities,

each sub-community with different expertise. Members of a

sub-community should need an appropriate computer

environment, suitable to them.

The developed environments appear to their users as

workshops, providing them with the tools, organized on a

bench, that are necessary to accomplish their specific

activities. Users work in analogy to artisans, who carry out

their work using their real or virtual tools, as it occurs in

blacksmith or joiner workshops. For this reason, the

Silvia Berti
20

computer environments developed with this methodology

are called Software Shaping Workshops (SSWs) [11].

SSWs allow users to develop software artifacts without the

burden of using a traditional programming language, but

using high level visual languages tailored to users' needs.

Moreover, users get the feeling of simply manipulating the

objects of interest in a way similar to what they might do in

the real world. Indeed, they are creating an electronic

document through which they can perform some

computation, without writing any textual program code.

The SSW methodology is aimed at generating virtual

environments, the workshops, in which each user sub-

community interacts using a computerized dialect of their

traditional languages and virtual tools, which recall the real

tools with which users are familiar. In other words, the

SSW approach provides each sub-community with a

personalized workshop, called application workshop. Using

an application workshop, experts of a sub-community can

work out data from a common knowledge base and produce

new knowledge, which can be added to the common

knowledge base. All the data available for the community

are accessible by each expert using the specialist notation of

its sub-community.

The application workshops are designed by a design team

composed by various experts, who participate to the design

using workshops tailored to them. These workshops are

called system workshops and are characterized by the fact

that they are used to generate or update other workshops. In

other words, using a system workshop, the design team

defines notations and tools, which are added to the common

knowledge base and exploited in the generated workshops.

This approach leads to a workshop hierarchy that tries to

bridge the communicational gap between designers and

domain expert users, since all cooperate in developing

computer systems customized to the needs of the users

communities without requiring them to become skilled

programmers [5].

The system workshop at the top of the hierarchy is the one

used by the software engineers to lead the team in

developing the other workshops. Each system workshop is

exploited to incrementally translate concepts and tools

expressed in computer oriented languages into tools

expressed in notations that resemble the traditional user

notations and therefore understandable and manageable by

users. More precisely, at each level of the hierarchy but the

bottom level, experts use a system workshop to create a

child workshop tailored to a more specialized user.

The hierarchy organization depends on the working

organization of the user community to which the hierarchy

is dedicated: each hierarchy is therefore organized into a

number of levels. The top level (software engineering level)

and the bottom level (application level) are always present

in a hierarchy. The number of intermediate levels is

variable according to the different working organization of

the user community to which the hierarchy is dedicated.

The SSW approach is aimed at overcoming the

communicational gap between designers and users by a

‘gentle slope’ approach to the design complexity [15]. In

fact, the team of designers performs its activity by: a)

developing several specialized system workshops tailored

to the needs of each designer in the team; and b) using the

system workshops to develop the application workshops

through in incremental prototypes [11][9]. In summary, the

design and implementation of application workshops is

incremental and based on the contextual, progressive gain

of insight on the user problems, emerging from the activity

of checking, revising and updating the application

workshops performed by each member of the designer

team.

Recognizing the diversity of users calls for the ability to

represent a meaning of a concept with different

materializations, in accordance with local cultures and the

used layouts, sounds, colors, times and to associate to a

same materialization a different meaning according, for

example, to the context of interaction. The SSW

methodology aims at developing application workshops

which are tailored to the culture, skill and articulatory

abilities of specific user communities. To reach this goal, it

becomes important to decouple the pictorial representation

of data from their computational representation [4]. In this

way, the system is able to represent data according to the

user needs, by taking into account user diversity. Several

prototypes were developed in this line, in medical and

mechanical engineering [18], exploiting C and C++. The

XML technologies, which are founded on the same concept

of separating materialization of a document from its

content, are being extensively exploited.

The workshops in the SSW hierarchy are implemented as

XML documents and a software tool has been developed

allowing to create, manage and interact with such

documents, whose content is distributed in the Web [9].

Finally, XML is also the technological basis to build the

tools to generate the SSW hierarchy: each XML document

can be steered by its users to self-transform into a new

XML document representing a new workshop. On the

whole, SSW hierarchy is generated from the system

workshop of the software engineers by a co-evolutive

process determined by the activities of the experts of the

design team.

In a SSW, domain-expert users are allowed to perform

various activities of EUD, e.g. those called in [12]

modeling from the data and extended annotation. To give

some examples, in [1], the system derives patterns of

interaction from monitoring user-system interaction in order

to allow system co-evolution based on the observation of

user behavior; in the system presented in [11] the experts

using the system workshop to develop, write comments next

to data in order to remember to obtain what they did, how

they obtained their results; they can also associate a new

functionality with the annotated data, in order to make

available such data to other users who work in a different

SSW.

Silvia Berti
21

CONCLUSIONS

Some studies report that by 2005, there will be in USA 55

millions of end-users vs 2.75 millions of professionals

developer [3]. Most end-users are asking for environments

in which they can make some ad hoc programming activity

related to their tasks and adapt the environments to their

emerging new needs. Moreover, several phenomena

contribute to the current difficulty of user-system

interaction, such as the communicational gap often existing

between designers and systems, the user diversity, the co-

evolution of systems and users, and the grain imposed by

software tools. The methodology discussed in this paper, by

taking into account the four mentioned phenomena, is a step

toward the development of powerful and flexible

environments, with the objective of easing the way end-

users interact with computer systems to perform their daily

work.

REFERENCES

1. Arondi, S., Baroni, P., Fogli, D., Mussio, P. Supporting

co-evolution of users and systems by the recognition of

Interaction Patterns. Proceedings of the International

Conference on Advanced Visual Interfaces (AVI 2002),

Trento (I), May 2002, 177-189.

2. Baroni, P., Fogli, D., Mussio, P. An agent-based

architecture to support knowledge management in

interactive system life-cycle, Accepted for presentation

at WOA 2002” Dagli Oggetti agli Agenti -

Dall'informazione alla Conoscenza”, Milan (I), 2002.

3. Boehm, B. W., Abts, C., Brown, A.W., Chulani, S.,

Clark, B.K., Horowitz, E., Madachy, R., Reifer, D.J. and

Steece, B. Software Cost Estimation with COCOMO II,

Prentice Hall PTR, Upper Saddle River, NJ, 2000.

4. Bottoni, P., Costabile, M.F., Levialdi, S., Mussio, P.

Defining Visual Languages for Interactive Computing.

IEEE Trans. SMC, Part A, 27 (6), November 1997.

5. Bottoni, P., Costabile, M.F., Levialdi, S., Mussio, P.:

From User Notations to Accessible Interfaces through

Visual Languages. In: Stephanidis, C. (ed.): Universal

Access In HCI: Toward an Information Society for All,

Vol. 3. Lawrence Erlbaum Associates, Mahawah, New

Jersey, London, 252-256, 2001.

6. Bottoni, P., Costabile, M.F., Mussio, P. Specification

and Dialogue Control of Visual Interaction through

Visual Rewriting Systems, ACM Trans. on

Programming Languages and Systems TOPLAS, Vol.

21, No. 6, 1077-1136, 1999.

7. Bourguin, G., Derycke, A., Tarby, J.C. Beyond the

Interface: Co-evolution inside Interactive Systems - A

Proposal Founded on Activity Theory, Proc. IHM-HCI

2001.

8. Brancheau, J.C., Brown, C.V. The Management of End-

User Computing: Status and Directions. ACM

Computing Surveys 25(4), 1993.

9. Carrara, P., Fogli, D., Fresta, G., Mussio, P. Toward

overcoming culture, skill and situation hurdles in

human-computer interaction. Int. Journal Universal

Access in the Information Society, 1(4), 288-304, 2002.

10. Carroll, J.M., Rosson, M.B., Deliberated Evolution:

Stalking the View Matcher in design space. Human-

Computer Interaction 6 (3 and 4), 281-318, 1992.

11. Costabile, M.F., Fogli, D., Fresta, G., Mussio, P.,

Piccinno, A. Computer Environments for Improving

End-User Accessibility. Proc. of 7th ERCIM Workshop

"User Interfaces For All", Paris, 187-198. 2002.

12. Costabile, M.F., Fogli, D., Letondal, C., Mussio, P.,

Piccinno, A. Domain-Expert Users and their Needs of

Software Development, invited paper at Special Session

on EUD, UAHCI Conference, Crete, June 2003.

13. Cypher, A. Watch What I Do: Programming by

Demonstration. The MIT Press, Cambridge, 1993.

14. Dix, A., Finlay, J., Abowd, G., Beale, R. Human

Computer Interaction, Prentice Hall, London, 1998.

15. EUD-Net Thematic Network, Network of Excellence on

End-User Development, http://giove.cnuce.cnr.it/eud-

net.htm.

16. Green, T.R.G, Petre, M.: Usability Analysis of Visual

Programming Environments. Journal of Visual

Language and Computing 7(2), 131-174, 1996.

17. Majhew, D.J. Principles and Guideline in Software

User Interface Design, Prentice Hall, 1992.

18. Mussio P, Finadri M, Gentini P, Colombo F. A

bootstrap technique to visual interface design and

development. The Visual Computer 8(2), 75-93, 1992.

19. Nielsen, J. Usability Engineering, Academic Press, San

Diego, 1993.

20. Petre, M., Green, T.R.G. Learning to Read Graphics:

Some Evidence that ‘Seeing’ an Information Display is

an Acquired Skill. Journal of Visual Languages and

Computing, 4(1), 55-70, 1993.

21. Stephanidis, C. (Ed.), Salvendy, G., Akoumianakis, D.,

Arnold, A., Bevan, N., Dardailler, D., Emiliani, P.L.,

Iakovidis, I., Jenkins, P., Karshmer, A., Korn, P.,

Marcus, A., Murphy, H., Oppermann, C., Stary, C.,

Tamura, H., Tscheligi, M., Ueda, H., Weber, G., &

Ziegler, J. Toward an Information Society for All: HCI

challenges and R&D recommendations, International

Journal of Human-Computer Interaction, 11 (1), 1-28,

1999.

Silvia Berti
22

Supporting End User Programming of Context-Aware
Applications

Anind K. Dey and Tim Sohn

anind@intel-research.net, tsohn@cs.berkeley.edu

The emergence of context-aware applications, those that take into account their context
of use, has shown the ability for rich interaction with the surrounding environment.
However, although some of these applications have been developed, the proliferation of
context-aware applications is inhibited by the lack of programming support to rapidly
develop them. Currently, to develop a context-aware application, developers are required
to either design and implement their own application from scratch requiring them to write
code which directly interacting with devices, or use a toolkit that hides a lot of the device
details from them [2].

However, even with low-level toolkit support for acquiring context, experienced
developers are still required to write a large amount of code to develop relatively simple
applications. In order for ubiquitous computing applications, the superset of context-
aware applications, to truly become ubiquitous, the following two things (among many
others) need to occur. The first is that applications have to be easier to design, prototype
and test, supporting faster iterations for the design-prototype-evaluation cycle. The
second is that designers and end users need to be empowered to build their own
applications. Empowering designers will allow people with superior creative skills to
build innovative applications without having to be expert programmers. Empowering end
users will allow users to build applications that are customized and appropriate for their
own use. Rather than leaving control of these systems in the hands of programmers who
do not have to live with them, end users should be given this control.

In our previous research, we have looked at making it easier for programmers to build
context-aware applications through the use of the Context Toolkit [2], which removed the
need to deal with the underlying details of sensors similar to the way that graphical user
interface toolkits removed the need to deal with low-level details for building interfaces.
While this eased the burden on programmers, it did not remove the burden, and certainly
did not open up the space for designers and end-users in the way that systems like
AgentSheets [7] and Stick-e Notes [8] did. These are the issues we are now concentrating
on. In this paper, we will present an initial implementation of our visual environment for
supporting end-user prototyping and present ideas for other end-user prototyping
environments.

VISUAL PROTOTYPING: THE iCAP SYSTEM
iCAP is the intermediate layer between low-level toolkits and users, providing a powerful
tool for developing interesting, complex context-aware applications, while allowing
developers to prototype applications without writing any code. A context-aware
application typically consists of an infrastructure to capture context and rules governing
how the application should respond to changes in this context. iCAP is an informal pen-

Silvia Berti
23

based tool that allows users to quickly define input devices that collect context and output
devices that support response, create application rules with them, and test the rules by
interacting with the devices in a run mode. The behavior of created devices can either be
simulated by this tool, or mapped to actual devices. We built iCAP using the Java 2 SDK
version 1.4, on top of SATIN [3], a toolkit for building informal pen-based interaction
systems.

THE iCAP INTERFACE
iCAP has one window with two main areas (see Figure 1). On the left is a tabbed window
that is the repository for the user-defined inputs, outputs, and rules. The input and output
components are associated with graphical icons that can be dragged into the center area,
then be used to construct a conditional rule statement.

Figure 1. The iCAP user interface with an example rule that uses two sheets.

The center area contains the two elements of a conditional rule statement, which is
inherent within context-aware applications. An example rule is: if John is in the office
after 5pm and the temperature is less than 50 degrees or if Jane is in the bedroom and
the temperature is between 30 and 60 degrees, turn on the heater in the house (Figure 1).
The left side represents the ‘‘if’’ portion of the rule conditional, and can be split into one
or more ‘‘sheets’’. Inputs on a single sheet are related by a conjunction and multiple
sheets are related by a disjunction. The right side of this area represents the ‘‘then’’
portion of the rule condition. Disjunction amongst different outputs is rare, thus only a
single output sheet is currently supported. We implemented Pane and Myers’ matching
scheme to allow users to visually specify the Boolean logic of each rule [6].

Instead of traditional pull-down menus for executing commands, we use pie menus to
better support pen interaction. In addition, we also support gestures for issuing common
commands such as cut, copy, and paste of inputs and outputs.

INTERACTION
iCAP involves specifying inputs and outputs, using these elements to construct
application rules, and then testing the entire set of rules in a run mode.

Silvia Berti
24

Creating Inputs and Outputs

Each input and output component in iCAP is associated with a graphical icon. These
icons are sketches drawn by the user upon creation of each component. Each icon is
colored differently depending on whether it is an input or output device. The repository
window pie menu supports creation of inputs. Each input contains a suffix (e.g. degrees
Celsius for temperature), type (e.g. integer, string), and four categories or primary types
of context: Activity, Identity, Location, and Time. An input’s potential values can be
provided as a range or list.

Outputs are created in the same manner as inputs, however contain different parameters
to specify. Each output is either a binary or a gradient device. By default, the number of
levels in a gradient device is between 1 and 10 inclusive. In addition, there are five
categories an output device is associated with corresponding to the five human senses:
Sight, Sound, Smell, Taste, and Touch.

Constructing Rules

Rules are constructed by dragging and dropping inputs and outputs onto the ‘‘if’’ and
‘‘then’’ sheets of each rule. For example, if the user were interested in a temperature
sensor, he would define a temperature input, and drag the corresponding icon onto the
respective sheet. After dragging each corresponding icon, the user needs to setup certain
parameters, or conditions, governing the behavior of the input. Using our temperature
sensor, the user may want to know when the temperature is less than 50 degrees, or
possibly between 30 and 60 degrees. We allow the user to specify a conjunction of up to
three conditions using the following operators: less than, less than equal, greater than,
equal, not equal. Multiple condition sets can be defined, and are all related by a
disjunction.

Evaluating the Application

After a number of rules have been defined, the entire rule set can be tested using the
iCAP engine in run mode. The engine can either be set to simulate the context-aware
environment, or be used in conjunction with a real context-aware environment [2]. Users
can interact with the engine to change the value of defined inputs, and evaluate the
behavior of the rules being tested. With the engine, users are able to quickly design and
test their applications, without having to create an entire infrastructure for collecting or
simulating context and without writing any code.

OTHER PROTOTYPING ENVIRONMENTS
While we have focused our attention on a visual environment for supporting end users
and designers in building context-aware applications, we have some other ideas for other
prototyping environments. Since context-aware applications are often focused on
physical phenomena, future prototyping environments should exist outside the graphical
world and in the physical world.

One idea for an environment would be to create physical representations of the graphical
icons. The physical representations could be more detailed and familiar than graphical
icons and the use of them would leverage off of the known benefits of tangible user
interfaces [4]. The prototyping environment would be similar to iCAP, where rules are

Silvia Berti
25

constructed out of basic input and output elements. We believe that the physicality of the
elements are more appropriate for physically-based applications and implementing this
environment would let us test this hypothesis.

A further idea for a physically-based context-aware prototyping environment is to allow
users to create rules by “acting” them out or by behaving naturally. This is commonly
known as programming-by-demonstration [1]. To create a rule that would turn on the
light when the user entered the room, the user would enter the room and turn on the light.
A number of training examples will be necessary (a greater number as rule complexity
increases) for an underlying learning system to understand the rule. The implementation
of such an environment is complex, requiring instrumentation of the user’s environment
and a sophisticated learning system. The first requirement is necessary for executing a
context-aware application, so this should not be a burden. The need for the second is
balanced with the advantage of more natural programming by the end user.

FUTURE DIRECTIONS
While we have received informal feedback from local designers of context-aware
systems, we are planning to conduct a more formal study of our iCAP with a number of
real users to see what features are used, and how to improve interaction with the system.
Our goal is to enable both designers and end-users with the ability to create and modify
context-aware applications, giving them the power that only programmers enjoy today.
Once we gain experience with iCAP, we will look to building our more physically-based
prototyping environments.

REFERENCES
1. Cypher, A. “Eager: Programming Repetitive Tasks By Example.” In Proceedings of

CHI ‘91, pp. 33-39. 1991.
2. Dey, A.K., Salber, D. and Abowd, G.D. ‘‘A Conceptual Framework and a Toolkit for

Supporting the Rapid Prototyping of Context-Aware Applications.’’ Human-
Computer Interaction Journal, 16 (2-4), pp. 97-166. 2001.

3. Hong, J.I. and Landay, J.A. ‘‘SATIN: A Toolkit for Informal Ink-based
Applications.” In Proceedings of User Interface and Software Technology, pp. 63-72.
2000.

4. Ishii, H. and Ullmer, B. “Tangible Bits: Towards Seamless Interfaces Between
People, Bits and Atoms. In Proceedings of CHI ’97, pp. 234-241. 1997.

5. Mozer, M.C. “The Neural Network House: An Environment That Adapts to its
Inhabitants.” In Proceedings of the AAAI Spring Symposium on Intelligent
Environments, pp. 110-114. 1998.

6. Pane, J.F. and Myers, B.A. ‘‘Tabular and Textual Methods for Selecting Objects from
a Group.’’ In Proceedings of International Symposium on Visual Languages, pp. 157-
164. 2000.

7. Pascoe, J. ‘‘The Stick-e Note Architecture: Extending the Interface Beyond the
User.’’ In Proceedings of Intelligent User Interfaces, pp. 261-264. 1997.

8. Repenning, A. ‘‘Creating User Interfaces with Agentsheets.’’ In Proceedings of
Symposium on Applied Computing, pp. 190-196. 1991.

Silvia Berti
26

Some Generic Mechanisms for Increasing the Usability of EUD
Environments

Simone Diniz Junqueira Barbosa

Departamento de Informática, PUC-Rio
R. Marquês de São Vicente, 225

Gávea, 22453-900
Rio de Janeiro, RJ, Brazil

simone@inf.puc-rio.br

Philippe Palanque
LIIHS-IRIT

Université Paul Sabatier
118, route de Narbonne, 31062

Toulouse Cedex, France
 palanque@irit.fr

Rémi Bastide
LIIHS-IRIT

University of Toulouse I
Place Anatole France, 31042

Toulouse Cedex, France
bastide@irit.fr

1 INTRODUCTION
Successful EUD environments need to support users’ transition from passive users to active “end-user-designers”. On the one
hand, macro recording facilitates the creation of extensions, but fails at providing the means for changing what has been
recorded. Approaches based on programming by demonstration (Lieberman 2001, Cypher 1993) go one step further, but the
proposed mechanisms are typically too close to the application domain to be easily generalized and reused. On the other hand,
scripting and programming languages allow both the creation and maintenance of user extensions, but they require users to
know how to program. There is a growing need for alternative EUD approaches that fill the gap between these two extremes,
providing usable generic EUD mechanisms that have the computing power of programming languages and yet do not burden
users with having to learn a wide range of programming constructs and syntax.
This paper illustrates the use of application models at different levels of abstraction and following different interaction styles
(direct manipulation and conversational) as a basis for generic EUD mechanisms. These mechanisms are introduced here
according to the Norman's seven stages of action (see figure 1). The claim is to propose "basic principles" to be embedded in
EUD environments in order to reduce potential difficulties.
The model-based approaches to EUD described here are targeted to motivated end users who would like to be active domain
designers (Fischer 2002), i.e., users that are knowledgeable in specific domains and are enough interested in their work so as
to frequently engage in personally meaningful activities. We assume that, not only would these users go a little out of their
way during interaction to create an extension they deem useful, but also that they are able to understand and manipulate
formal languages (Nardi 1993).
Pane et al. (2001) have conducted experiments with the language used by nonprogrammers in programming tasks, and their
findings suggest that the usability of programming languages may be improved by providing different language styles, each
one more natural for a certain (part of) the programming task. Inspired by this idea, the approaches described here are not
meant to be used in isolation, but rather to go together with other EUD approaches.

2 UCD and EUD
User-centered design aims to build applications in which the user, by interacting with the system image, is able to build a
conceptual (mental) usage model compatible with the designer’s (,). Figure 1 presents Norman’s seven stages of action,
which describes the steps users go through during interaction. The left-hand side of the figure represents the execution path,
i.e. the set of activities that have to be carried out by the user in order to reach the goal, whereas the right-hand side represents
the evaluation path, i.e. the set of activities that have to be carried out by the user in order to interpret the changes resulting
from his/her actions with respect to his/her goals.

Goals

Intention to act

Sequence of actions

Execution of the action sequence

Interpreting the perception

Evaluation of interpretation

Perceiving the state of the world

The world

Figure 1. Norman’s seven stages of action (Norman 1988, p.47).

Silvia Berti
27

Based on this model, Hutchins et al. (1986) have studied the directness of a user interface by analyzing two dimensions when
traversing both execution and evaluation gulfs: distance (semantic and articulatory) and engagement (direct or
conversational). The semantic distance is the (lack of) correspondence between the user’s view of the domain and the
perceived application model, whereas the articulatory distance is the (lack of) correspondence between this model and the
user interface. The concept of engagement is related to how close do users feel involved with a world of objects: direct means
they are engaged with the objects themselves, as in direct manipulation, whereas conversational means they are engaged in
conversation(s) with the system, and the system will in turn act on these objects. In the next two sections, we will explore how
these forms of engagement may be used in EUD.
In UCD, it is the designer’s responsibility to build applications with gulfs as narrow as possible at design-time, striving for
short semantic and articulatory distances. During interaction, users must learn how to overcome these distances and traverse
the gulfs. It is thus essentially important that designers effectively communicate, through the user interface, their
interpretations and assumptions about the application domain and its potential contexts of use, in order to increase the quality
of the match between the users’ models and their own, thus reducing the semantic distance in both gulfs (). In EUD, this is
critical because users will assume the role of designers, albeit limited. During EUD, users must themselves shorten the
distances and narrow the gulfs, instead of just traversing them. They should be able to modify the application model so it
matches more closely their view of the domain, thus shortening the semantic distance. They should also be able to make
changes in the user interface in order to both reflect the modified application model and provide a form of interaction that is
more “natural” to users with respect to this model, thus shortening the articulatory distance.
At design-time, the semantic and articulatory distances may be shortened by designing an application model and user interface
closer to the application domain. However, this reduces the systems’ applicability to other domains. In EUD systems, this
problem is mostly due to the tight coupling between the domain-related part of the application and its EUD part. This is one
of the major challenges faced by EUD based on programming by example (Lieberman 2001, Cypher 1993). In order to avoid
losing generality, we propose to keep these two parts more loosely coupled. One way to achieve this is to build usable generic
EUD mechanisms that make use of specific domain and application models. In the next sections, we assume that the spectrum
of possible interactions is represented in a semantic application model that is made available to users via the EUD mechanism.

3 MODEL-BASED EUD with DIRECT ENGAGEMENT
Although the expressions “model-based” and “direct engagement” may seem contradictory, we view the application model as
the object with which users (domain designers) are engaging during EUD. In EUD, execution may be thought of as program
creation and editing, whereas evaluation comprises program execution and appraisal. These activities are usually made
available to the user in a modal, sequential way: first the user writes the program and then (often in a different context) runs it.
Making these two activities separate and modal introduces difficulties in both perceiving the program execution and
interpreting its behaviour (). This problem is not specific to EUD and even professional developers encounter the same
difficulties. In order to promote direct engagement in software development and overcome these artificially-modal activities, a
programming environment called PetShop was developed to support these activities in parallel ().

3.1 The PetShop Environment and ICO Language
PetShop allows for rapid prototyping, iterative and modeless construction of applications, by providing a way of having both
program execution and program editing at a time. Figure 2 presents a snapshot of Petshop at runtime. The small window on
top of the picture (whose caption reads “RangeSlider”) corresponds to the execution of the visual program (represented by the
Petri net) in the bigger window underneath (the main PetShop window).

Silvia Berti
28

Figure 2. Integrated program editing and execution within PetShop.

The program illustrated in Figure 2 corresponds to the behaviour of a range slider, shown in Figure 3.

RightBar
LeftBar

LeftArrow Lift RightArrow

Figure 3. A simple application: a range slider (Ahlberg & Shneiderman 94)

A range slider is a basic interactive component that allows the user to select values within a range (between a lower and an
upper bound). The range slider belongs to the hybrid category of interactors as it can be manipulated both in a discrete and
continuous way. Quite complex interactors such as this have been increasingly used in interactive applications and companies
building user interface toolkits (such as Microsoft and Ilog) have already invested in component technology. However, the
more complex the components, the less reliable they are.
Petshop makes use of an object-oriented, distributed and concurrent language called Interactive Cooperative Objects (ICO) ().
This language is dedicated to the construction of highly interactive distributed applications. It is to be used by expert
programmers skilled in formal description techniques, object-oriented approaches, distributed and interactive systems. Even
though the initially targeted programmers were not end users of the applications to be constructed, it has always been a goal to
increase the usability of the notation by providing ways of reducing the evaluation gulf.
The behavioural description of the range slider in ICO models the set of events it can react to (mouse up, mouse move and
mouse down), the set of states it can be in (the distribution of tokens in the places (ellipses) Petri net) and the set of actions
the range slider can perform (the transitions (rectangles) in the Petri net). In the Petshop environment, the programmer can
simultaneously interact with the application (use the range slider) and see the impact of his/her action on the behaviour of the
visual program. Another possibility is to modify the visual program and immediately see the impact on the program execution.
For instance, in Figure 2, the transition "begin Update Left Value" is associated to the left button of the range slider. If, by
modifying the Petri net, the programmer makes this transition unavailable (for instance by adding an input place without any
token in it), then the button will immediately appear as disabled (greyed out), and acting on it will have no effect. Figure 2
showed only a subset of this interactor’s behaviour; the complete description of the case study can be found in (Navarre et al.
2000).

Silvia Berti
29

One of the problems of building a concurrent program is, first, to understand its behaviour, and then to understand whether
this behaviour is similar to the expected one. Some preliminary evaluation of ICO language and PetShop have been conducted
as part of the Mefisto LTR Esprit Project. However, in order to quantify and confirm the results of this early evaluation, more
usability tests must be conducted. This will be done in the framework of a military funded project starting in January 2003.

4 MODEL-BASED EUD with CONVERSATIONAL ENGAGEMENT
Most work dedicated to EUD has focused on tasks involving procedural knowledge, e.g. automation of repetitive tasks.
However, declarative knowledge is also present in many of today’s applications, among which the most well-known is
probably the definition of formatting styles in word processors, stylesheets, and graphical editors. The definition of default
values for parameters in an application also fall in this category, and this aspect has seldom been explored.
In EUD, declarative knowledge is typically left to the realm of scripting and programming languages. In this section, we
present a way for end users to declaratively employ certain figures of speech (namely: analogies, metaphors and metonymies)
that operate on an application model to extend it (Barbosa & de Souza 2001). Figures of speech are best explored in
language-based interfaces, where users have a wider range of linguistic resources to express themselves. Hence the choice to
take a conversational stance in this kind of EUD. This work is based on research in the field of Cognitive Science which
suggests that we (humans) think and express ourselves extensively in non-literal ways (Lakoff & Johnson 1980, Ortony 1993).
In particular, we make use of metaphors and metonymies in order to understand or explain a (typically unfamiliar) concept in
terms of other (more familiar) concepts, by highlighting a concept’s characteristics or relations, and concealing others.
The EUD approach described in this section uses a particular kind of linguistic mechanism that achieves the same effect as
practical extensions. It is called extension by interpretation (Barbosa & de Souza 2001), and it may be viewed as a shortcut to
performing a series of extensions to the application model. It presents an EUD mechanism in which the interface language
allow users to produce metaphorical or metonymic expressions, and the language interpreter attempts to make sense of such
expressions. When it succeeds, it behaves according to the interpretation it derived; when it doesn’t, it interacts with the user
based on partial interpretations. If no interpretation is derived, the interface reacts as any typical interface in non-extensible
software, issuing an error message.
The sense-making process is a kind of abductive process (Peirce 1931) that generates possible interpretations to users’
expressions by means of specific metaphorical and metonymic operators. One of the hardest EUD challenges is related to the
users’ lack of knowledge about the underlying application models. By drawing on the works of French (1995) and Holyoak
and Thagard (1996), this EUD approach helps fill this knowledge gap with an enhanced representation of domain and
application models, which are manipulated by abductive mechanisms that interpret metaphorical and metonymic utterances.
These utterances often account for what can be diagnosed as imprecise and incomplete knowledge in traditional approaches.
In order to help users acquire a better understanding of the application, we calculate possible interpretations for their
utterances and give them feedback about the reasoning process involved in each interpretation. This feedback progressively
unfolds to the user aspects of the internal application structure (DiGiano 1996, DiGiano & Eisenberg 1995).
In order to be able to generate and interpret metonymic and metaphoric expressions, designers need to represent the
application model both as an ontology, i.e. relations among elements and identify which ones may be part of a metonymic
chain, and as an interaction model, which describes the dynamic behaviour of the application.

4.1 Metonymies and Metaphors
A metonymic utterance occurs when reference to an element is made by another element with which the first has a relation of
part-whole, content-container, cause-effect, producer-product, among other possibilities. For example, when we say “He’s got
a Picasso”, we mean he’s got a work of art produced by Picasso. In a computer application, we might express “copy the
boldface”, to mean “copy the text formatted in boldface”. Still regarding computer applications, metonymies can also be used
to generate iterations and recursions. For instance, in a graphical editor that allows users to group objects, if a user selects a
group and chooses a different fill color, it iterates through all elements in the selected group and applies the chosen fill color
to each element that can be filled, individually. This is clearly figurative speech, where of course that only the “colorable”
elements in the group should be affected. Nevertheless, such usage of metonymies is typically ad hoc, or incidental, not to be
consistently found elsewhere in the application. Users must learn where such metonymies may be used in isolation, and
shouldn’t expect a predictable behaviour of seemingly analogous situations.
Composition and aggregation relations, such as part-of, are natural candidates for metonymy. Other relations must be
explicitly declared as having metonymic potential, such as: location, ownership, possession, creation, and many others. When
interpreting a user’s utterance, the metonymic chains in the application ontology are traversed, making paradigmatic
substitutions in it and checking if the resulting expression has a literal interpretation. A valid substitute becomes the
metonymic target. The utterance interpretation is the result of an iteration through every element in the original expression

Silvia Berti
30

obtained by following the chain to the metonymic target, or every metonymic target reached from the original expression,
depending on the direction traversed: from “whole” or “producer” to “part” or “product” (typically 1-to-n); or from “part” or
“product” to “whole” or “producer” (typically n-to-1).
Metaphors may arise when comparing the relations between pairs of elements. For example, there may be a relation “written
by” linking a text to its author, and the instances “O Cortiço written by Aluísio de Azevedo”, and “O Guarani written by José
de Alencar”. The expression “Aluísio de Azevedo’s O Guarani” will result in retrieving an instance of “Something written by
Aluísio de Azevedo”. If the underlying domain representation is rich enough to single out Alencar’s O Guarani as his most
famous novel, the metaphorical representation can qualify “something written by” with the attribute “most famous”, and thus
retrieves Azevedo’s novel that is, in the representation, as remarkable as O Guarani is for Alencar.
The appropriateness and sophistication of metonymic and metaphoric interpretations is directly proportional to the
expressiveness of the underlying domain models. We may use classifications, relations, and attributes in the application
ontology to generate and (try to) disambiguate metaphorical interpretations for users’ non-literal expressions. However, when
it is impossible to disambiguate terms or when there are many alternatives for interpretation, the application should present
choices to users, along with an explanation about how they were generated, and have users select the one they mean, or
discard them all and try to use another form of expression.

4.2 Achieving EUD using Metaphors and Metonymies
In order to achieve EUD using metaphors and metonymies, it is necessary to interpret utterances that modify the application
ontology and/or its behaviour. An example of such an extension is as follows: suppose A, B, and C are elements defined in the
ontology, and that A has a relation R1 with B. A user’s utterance of the form D is the B of C triggers a search for an element
of a “similar nature” of C, i.e. that is classified together with C in one or more groups). This search may be illustrated by
Figure 4:

Element E? C

D B

group G

Relation R?

Figure 4. Illustration of a search mechanism for calculating metaphors

If the unknown element E is matched to A and relation R? is matched to R1, then the EUD mechanism creates relation R1
from C to D. This is of course a very simple example, for there are usually many candidates for element E or a set of relations
from E to B and other elements. In this case, interaction with the user is necessary to disambiguate and choose or even
redirect the relevant relations. This process can be abbreviated if the user’s utterance is not a metaphor, but an analogy in the
form “D is to C as B is to A”. However, the above example illustrates a radical attempt to shortcut the extension, which may
be necessary if the user does not have a clear, complete understanding of the underlying ontology (e.g. forgets the name of A).
The situation worsens as the application’s semantic distances increase, because a basic requirement for effectively using this
kind of figurative language in our communication, is that the user shares the same knowledge, assumptions, and cultural
background (Lakoff 1987) as embedded in the application ontology. More complex extensions, involving attributes, relations
with attributes, and dynamic behaviour, can be found in (Barbosa & de Souza 2001).
It is important to notice that this approach does not aim to substitute procedural EUD, but rather complement it. For instance,
it could be used together with the work on Programming by Analogous Examples (Repenning & Perrone 2001), which
already enables users to directly input a simple kind of analogical expression.

5 CONCLUDING REMARKS
The mechanisms described here for EUD are generic, but they are applied to domain and application-specific models. They
may be used in a variety of domains, but it is the richness of representation that will determine the opportunity for interesting
EUD. We believe that the integration of one or both of the presented model-based approaches (by direct manipulation and
following a conversational paradigm) to other EUD techniques may not only bring more power to users, but also soften the
learning curve necessary for effective EUD to take place. Using a variety of integrated EUD mechanisms will make it easier
for a wider class of users to effectively work as domain designers.

Silvia Berti
31

6 REFERENCES
Ahlberg C. & Shneiderman B. The Alphaslider: A Compact and Rapid Selector. ACM SIGCHI conference on Human Factors
in Computing Systems, CHI'94, Boston, pp. 365-371. 1994.
Barbosa, S.D.J., de Souza, C.S. Extending Software through Metaphors and Metonymies. Knowledge-Based Systems 14,
pp.15–27. 2001.
Bastide R. & Palanque P. A Visual and Formal Glue between Application and Interaction. International Journal of Visual
Language and Computing, Academic Press Vol. 10, No. 5, pp. 481-507. 1999.
Butler R., Miller S., Potts J. & Carreño. A formal method approach to the analysis of mode confusion. In proceedings of 17th
AIAA/IEEE Digital Avionics Systems Conference, Bellevue, 1998.
Cypher, A. (ed.) Watch What I Do: Programming by Demonstration. The MIT Press. Cambridge MA. 1993.
de Souza, C.S. The Semiotic Engineering of User Interface Languages. International Journal of Man-Machine Studies. No.
39. pp. 753-773. 1993.
DiGiano, C. A vision of highly-learnable end-user programming languages. Child’s Play ’96 Position Paper. 1996.
DiGiano, C. and Eisenberg, M. Self-disclosing design tools: A gentle introduction to end-user programming. In Proceedings
of DIS’95. Ann Arbor, Michigan. ACM Press. 1995.
Fischer, G. “Beyond ‘Couch Potatoes’: From Consumers to Designers and Active Contributors”. First Monday, volume 7,
number 12 (December 2002), http://firstmonday.org/issues/issue7_12/fischer/index.html (last visited in January 2003)
French, R. The Subtlety of Sameness. Cambridge, MA: The MIT Press. 1995.
Holyoak, K.J. and Thagard, P. Mental Leaps: Analogy in Creative Thought. Cambridge, MA. The MIT Press. 1996.
Hutchins, E.; Hollan, J. and Norman, D. 86. Direct Manipulation Interfaces. in D. Norman and S. Draper (eds.) User
Centered System Design. Hillsdale, NJ. Lawrence Erlbaum. pp.87-124. 1986.
Lakoff, G. and Johnson, M. Metaphors We Live By. The University of Chicago Press. Chicago. 1980.
Lakoff, G. Women, Fire, and Dangerous Things. The University of Chicago Press. Chicago. 1987.
Lieberman, H. (ed.) Your Wish is My Command: Programming by Example. San Francisco, CA: Morgan Kaufmann
Publishers. 2001.
Nardi, B. A Small Matter of Programming. The MIT Press. Cambridge MA. 1993.
Navarre D., Palanque P., Bastide R. & Sy O. A Model-Based Tool for Interactive Prototyping of Highly Interactive
Applications. 12th IEEE, International Workshop on Rapid System Prototyping ; Monterey (USA). IEEE ; 2001.
Navarre D., Palanque P., Bastide R. & Sy O. Structuring interactive systems specifications for executability and
prototypability. 7th Eurographics workshop on Design, Specification and Verification of Interactive Systems, DSV-IS'2000;
Springer Verlag LNCS. n° 1946. 2000.
Norman, D. The Psychology of Everyday Things. New York:Doubleday, 1988.
Norman, D.A. Cognitive Engineering. In D. Norman and S. Draper (eds.) User-Centered Systems Design. Lawrence Erlbaum
and Associates. Hillsdale, NJ. pp.31-61. 1986.
Ortony, A. Metaphor and Thought, 2nd Edition. Cambridge: Cambridge University Press. 1993.
Pane, J.F., Ratanamahatana, C., Myers, B.A. Studying the language and structure in non-programmers' solutions to
programming problems. International Journal of Human-Computer Studies, Academic Press Vol 54, No.2, pp.237–264. 2001.
Peirce, C.S. Collected Papers. Cambridge, Ma. Harvard University Press. (excerpted in Buchler, Justus, ed., Philosophical
Writings of Peirce, New York: Dover, 1955). 1931.
Repenning, A., Perrone, C. Programming by Analogous Examples. Henry Lieberman (ed.) Your Wish is My Command:
Programming by Example. San Francisco, CA: Morgan Kaufmann Publishers, pp.351–369. 2001.

Silvia Berti
32

End user Development by Tailoring

Blurring the border between Use and Development

Yvonne Dittrich, Lars Lundberg and Olle Lindeberg
Blekinge Institute of Technology, Dept. of Software Engineering and Computer Science
{yvonne.dittrich, lars.lundberg, olle.lindeberg}@bth.se

1 Introduction
With the development of distributed and networked systems, single programs become more and more
part of a computer infrastructure, supporting not longer isolated tasks but interdependent work and
business practices. This puts new requirements on software. Software has to adapt to changes in the
technical environment, in the business and in the organization it supports, and in the work practices of
the people using the software. Flexible software provides one answer to this pressure for change. If a
specific kind of changes can be anticipated, part of the software can be designed so that the users can
adapt the software to changing requirements. This part or aspect of the software system can then be
further developed by users. Tailorable software provides possibilities for domain or application specific
End-User Development.
In this position paper we report experiences from two cases: the Billing Gateway, a system that sorts and
distributes call data records produced by phone calls to billing systems, statistics and fraud detection,
and a back office system of a telecommunication provider, administrating contracts and computing
payments based on certain events. The phenomenon, however, is not restricted to the telecommunication
area. Similar requirements for adaptability can be observed for municipal information systems [1],
computer supported co-operative work [9, 10], or in general for emergent organizations [11].
Comparing our cases, we see that the technical possibilities blur the border between use and
development and challenge the traditional classification of software practices. Tailorable software trades
the complexity of adding possibilities for end-user development against easy maintenance, no further
development by software engineers will be needed (for changes within the tailoring capabilities).

2 Experiences
This section reports experiences from two different projects. Each of them is related to a sharp industrial
application. In each of the projects we experimented with different solutions. Requirements from work
and business contexts as well as from the technical context of the applications guided the evaluation of
the respective prototypical solutions. In each case a specific solution optimizes the deployment of
available technology according to the situated requirements and constraints. These solutions raise a set
of HCI issues that will be discussed in the following section.

2.1 Flexibility in Large Telecommunication Systems
This case is from a research project focusing on performance aspects of multithreaded large
telecommunication systems. The need for customization after delivery is increasing in many
performance demanding real time systems. An example is the Billing Gateway that function as a
mediation device connecting network elements with post processing systems like billing systems,
statistical analysis and fraud detection. It contains an interface that allows tailoring of the filters and

Silvia Berti
33

formatters that sort and re-format the incoming call data records to the interfaces of the post processing
systems. The tailoring of the filters and formatters is done with help of a special purpose language that is
then interpreted by the system. This interpretation turned out to be a performance bottleneck for the
multiprocessor system, as it was dynamically allocating space using a common heap. Implementing a
compiled solution solved the problem. [6] Here flexibility could be kept while a good solution for the
performance problems was developed.

Figure 1: The Billing Gateway configuration view

2.2 Design for Change
In this chapter we report from a research co-operation with a telecommunication provider and a small
software developing company around the development of a software system for a rapidly changing
business area.1 Providing mobile communication is a competitive and rapidly changing business. The
application that is subject to the research co-operation is a system administrating certain payments. The
system computes the payments based on contracts. They are triggered by events.2 With the former
application only payments based on a certain event could be handled automatically. The business
practice requires payments based on other events as well as new contract types. Other aspects of the
computation, that today are hard coded should be subject to manipulation also.

1 The project is funded to 50% by the industrial partners and to 50% by KKS (The Knowledge Foundation). For more detailed

information see [2].
2 To protect the business interest of our industrial partner, we do not tell about the character of contracts.

Silvia Berti
34

The existing software has turned out to be too cumbersome to change. Beside specific restrictions in the
interface the adaptation of today’s program to new types of contracts and payments is not possible. They
have to be handled manually. Implementing a tailorable solution seemed a promising idea. With the help
of prototypes we explored different implementation possibilities. The program that now is used in the
company represents a different solution. First a conceptual model of the contract handler is provided.
Then two design solutions are presented.
The system can be regarded as two loosely connected parts (Figure 1): the transaction handler and the
contract handler. The transaction-handler application handles the actual payments and also produces
reports while its database stores data about the triggering events, payments and historical data about past
payments. (1)3 The data describing the triggering events is periodically imported from another system.
(2) To compute the payments, the transaction handler calls a stored procedure in the contract handler’s
database. (3) The event is matched with the contracts; several hits may occur. Some of the contracts
cancel others; some are paid out in parallel. We call the process of deciding which contracts to pay
‘prioritization’. (4) The result is returned to the transaction handler. (5) Payment is made by sending a
file to the economic system.

contract
handler

other
systems

compute
payment

user

transaction
handler

events payments
1

2

3

4

5

Figure 1

In order to make the system adaptable for future changes a conceptual model that facilitates a meta-
model description of the system is needed. We first noted that a condition is meaningful in a contract
only if the transaction handler can evaluate it when payment is due. This leads to the concept of event
types; a payment is triggered by an event and all contract types belong to a particular event type. Each
event type has a set of attributes associated with it that limit what a contract for such events can be based
on. Contract types that a handled similarly are put together in one group. Secondly, we split up the
computation of payments into two consecutive parts: first find all matching contracts and thereafter
select which to pay (prioritization).

Flexibility Light
The design of the finally implemented contract handler incorporates some meta-modeling features while
using a normal relational database. The result was a flexible system without using any complex or
nonstandard software. The flexibility comes primary from three features in the design. The first is to use
a non-normalized database. The contract types all have different parameters but they where anyway all
stored in the same database table which had fields for all parameters in any contract. This made a sparse
table wasting some disc space. The second feature was to group the contract types into groups. In most

3 The numbers refer to figure 1.

Silvia Berti
35

cases the program could handle all contracts belonging to the same group in an uniform way, simplifying
the program.
The third feature was to use the object oriented capabilities in PowerBuilder which was used to build the
graphical user interface. The user interface is constructed with one window for each contract-group type.
The windows were built as sets of interface objects, each taking care of one or, occasionally, a few
parameters. Since the parameters are treated in the same way in all contracts, this reduces the effort
required to construct the interfaces and facilitates addition of new ones. The interface objects also
guarantee that the user interface handles parameters in a consistent way.
The design makes it easy to add new contract types to the system. Some changes can be done directly by
tailoring in an administrator interface. Most changes will also need some programming but with the
system structured as it is the programming needed will be small and simple.
The design combines different techniques for implementing flexibility. When regarding the specific
situation with respect to use, operation and maintenance of the system the overall evaluation was that
design fitted well with the specific contexts of use and development at the telecommunication provider.
[4]

Why not using Meta Object Protocol
Inspired by the concept of meta-object protocols, we implemented a prototype that uses reflective
attributes of Java. [5] We wanted to gain an understanding of the complexities related to this approach.
The prototype does not implement the whole system but only a part of the contract handler application.
The prototype is divided into two levels, the meta-level and the base-level. Two catalogues, one storing
contract type and the other parameter classes implement the connection between the two levels. In the
meta-level of the prototype, the new contract types are created and stored in the contract type catalogue.
In the base-level the same classes are used as part of the program. The parameter class catalogue is used
by the meta-level to know which parameters exist and by the base-level as part of the program.
The metaobject protocol prototype can be implemented with a traditional, sparsely populated database or
with a database system that allows for changing the data model during runtime.

3 What if maintenance becomes use?
In the cases above tailoring features were implemented to allow end-users to adapt and further develop
the existing application to fit evolving requirements. Tasks that would otherwise require changes in the
source code implemented by software engineers from the company or unit that developed now in
principle could be done within the user community. Requirements for maintainability partly might
become requirements regarding the usability of the tailoring aspect of the application. This raises a set of
Human Computer Interaction issues:

How to decide on what part to make tailorable?
In both cases the development organization had built similar software before. Experiences had shown
which aspect of the application domain is likely to change. Familiarity with the application domain
contributed to a good estimation of for which part of the software new requirements might evolve. In the
contract-handler project future users and business experts were involved throughout the whole project.
This matches with experiences regarding the development of flexible middleware: Experiences from use
(in this case application programmers) give indication regarding what aspect of the system open up for
adaptation.

Silvia Berti
36

Designing a tailoring language
As normal interfaces, tailoring interfaces have to be understandable from a users’ perspective. They have
to represent the computational possibilities not only in a way that makes them accessible for use but
helps the user to understand, how to combine them. That also implies that at least the tailorable aspects
of the software have to be designed - even on the architecture level – that matches with a use perspective
on the domain. The presentation of the building blocks and the possible connections between has to be
presented in a comprehensible way as well. Mørch’s application units [7, 8] and Stiemerling et al’s
component based approach [9] are examples for such architecture concepts.
In the billing gateway interface partly provides a very intuitive interface from the user’s point of view.
The language for tailoring filters and formatters relates well to the technical education of its users.
Nonetheless, end-users have shown some reluctance to tailor the application. The contract handler did
not address that question, as it became clear quite early that the users were reluctant to change the
system. In the latter case the users seemed to feel insecure regarding the correctness of the results of the
adaptation.
The challenge is to finding ways to structure the tailoring capabilities of the application so that it is both
easy to implement and easy to understand for the user. In the cases we have shown this was no problem
the structures was natural from both perspectives. More investigations are needed for to se if this is the
normal case or an exception.

Reliability and testing
Personal performance tools like editors, work processors or even search tools in CSCW applications are
relatively save environments for tailoring. Errors just affect the outcome of the own work. In the cases
above, the tailoring effects billing data respectively payments. If these kind of production systems have
to be adapted, it requires a system test. That means a tailoring interface has to include testing facilities as
well. Results from test automation might be adaptable. But then again: how to design a test tool so that
non-computer scientists are able to make sense of it.

4 References
[1] Dittrich, Y., Eriksén, S. and Hansson, C. PD in the Wild; Evolving Practices of Design in Use. Accepted for the
Participatory Design Conference 2002.
[2] Dittrich, Y. and Lindeberg, O. Designing for Changing Work and Business Practices. In Patel, N. (ed.) Evolutionary and
Adaptive Information Systems. IDEA group publishing (forthcoming).
[3] Kiczales, Gregor 1992: “Towards a New Model of Abstraction in the Engineering of Software”, in Proceedings of
International Workshop on New Models for Software Architecture (IMSA): Reflection and Meta-Level Architecture, Tama
City, Tokyo, November 1992.
[4] Lindeberg, O. and Diestelkamp W. How Much Adaptability do You need? Evaluating Meta-modeling Techniques for
Adaptable Special Purpose Systems. In Proceedings of the Fifth IASTED International Conference on Software Engineering
and Applications, SEA 2001.
[5] Lindeberg, Olle & Eriksson Jeanette & Dittrich, Yvonne 2002: “Using Metaobject Protocol to Implement Tailoring;
Possibilities and Problems”, in The 6th World Conference on Integrated Design & Process Technology (IDPT ‘02),
Pasadena, USA, 2002.
[6] Mejstad, V., Tångby, K.-J. and Lundberg, L. Improving Multiprocessor Performance of a Large Telecommunication
System by Replacing Interpretation with Compilation. Accepted for the ???
[7] Mørch, Anders I. 2003:” Tailoring as Collaboration: The Mediating Role of Multiple Representations and Application
Units”, in N. Patel: Adaptive Evolutionary Information Systems. Idea group Inc. 2003.

Silvia Berti
37

[8] Mørch, Anders I. & Mehandjiev, Nikolay D. 2000:” Tailoring as Collaboration: The Mediating Role of Multiple
Representations and Application Units”, in Computer Supported Work 9:75-100, Kluwer Academic Publishers.
[9] Stiemerling, Oliver, Kahler, H. & Wulf, V. 1997 How to make software softer- Designing tailorable applications.
Proceedings of the Disigning Interactive Systems (DIS) 1997.
[10] Stiemerling, Oliver, & Cremers, Armin B. 1998: ”Tailorable component architectures for CSCW-systems” in Parallel
and Distributed Processing, 1998. PDP '98. Proceedings of the Sixth Euromicro Workshop pp: 302-308, IEEE Comput. Soc.
[11] Truex, D. P., Baskerville, R., & Klein, H. 1999 Growing Systems in Emergent Organisations. Communications of the
ACM vol. 42, pp. 117-123.

Silvia Berti
38

User-Programming of Net-Centric
Embedded Control Software

Jens H. Jahnke, Marc d'Entremont, Mike Lavender, Andrew McNair
UNIVERSITY OF VICTORIA

Department of Computer Science
Victoria, B.C, V8W 3P6, Canada

[jens|mdentrem|jstier|amcnair@cs.uvic.ca]

Abstract

The ongoing miniaturization and cost reduction in the sector of electronic hardware has created ample
opportunity for equipping private households with inexpensive smart devices for controlling and
automating various tasks in our daily lives. Networking technology and standards have an important role
in driving this development. The omnipresence of the Internet via phone lines, TV cable, power lines, and
wireless channels facilitates ubiquitous networks of smart devices that will significantly change the way
we interact with home appliances. Home networking is considered to become one of the fastest growing
markets in the area of information technology. However, interoperability and flexibility of embedded
devices are key challenges for making "Smart Home" technology accessible for a broad audience. In
particular, the software programs that determine the behavior of the smart home must facilitate
customizability and extensibility. Unlike industrial applications that are typically engineered by highly
skilled programmers, control and automation programs for the smart home should be understandable to
laypeople. In this article, we discuss how recent technological progress in the areas of visual
programming languages, component software, and connection-based programming can be applied to
programming the smart home. Our research is carried out in tight collaboration with a corporate partner
in the area of embedded systems.

Keywords
Embedded Software Engineering, End-User Programming, Autonomous Systems, Home Automation,
Connection-based Programming, and Component Software.

1. Programming Challenges for the Smart Home
The ongoing miniaturization and cost reduction in the sector of electronic hardware has created ample
opportunity for equipping private households with inexpensive smart devices for controlling and
automating various tasks in our daily lives. Networking technology and standards play an important role in
driving this development. The omnipresence of the Internet via phone lines, TV cable, power lines, and
wireless channels facilitates ubiquitous networks of smart devices that will significantly change the way we
interact with home appliances. Home networking is considered to become one of the fastest growing
markets in the area of information technology. Interoperability and flexibility of embedded devices are key
challenges for making "Smart Home" technology accessible for a broad audience. An increasing number of
connectivity standards for net-centric smart devices have been proposed by companies and industrial
consortia such as HAVi (Home Audio-Video interoperability), JetSend (intelligent service negotiation),
Jini, and Bluetooth (proximity-based wireless networking) [1].

Still, connectivity standards solve only the first part of the integration problem. Connectivity standards
deal with the creation of a common channel for communicating among various smart appliances. The
second part of the problem is to establish a common language so that home appliances can actually
understand each other and function in a collaborative manner. In general, this problem of semantic
interoperability is much harder to solve than the realization of the physical transport channel for data. The
main reason for these difficulties is the great heterogeneity of home appliances and the large variety of their
embedding context. Home appliances cover all aspects of our daily lives including environmental controls,
lighting, alarm systems and security, telecommunication, cooking, cleaning, entertainment, etc. There exist
a vast number of potential scenarios for integrating such appliances. It is not possible for vendors to foresee
all these applications and equip their devices with functionality that enables collaboration with every other

Silvia Berti
39

device a customer would like to integrate. Consequently, there is the need for customization mechanisms
that can be used for integrating different appliances and sensors into a common process that controls the
smart home.

Such customization mechanisms can be seen as the "programming language" for the smart home. Primary
requirements for such a programming language are ease of use and rapid deployment. Unlike industrial
applications that are typically engineered by highly skilled programmers, control and automation programs
for the smart home should be understandable by laypeople. Analogously to other "do-it-yourself"
maintenance activities around the home, programs for the smart home should be changeable by third-party
service providers as well as the homeowner herself. There is a good chance of achieving this goal because
applications in home automation tend to have lower complexity compared to industrial automation
systems. Still, traditional programming paradigms like textual programming languages appear inadequate
for this purpose. Effective programming mechanisms for the smart home require innovative paradigms that
lift programming to a level of abstraction that is similar to plugging in a new stereo or TV set. We will
shortly outline three such innovative paradigms in the following section. Then, we will describe an
example solution for programming the smart home in Section 3.

2. Enabling Paradigms
In this section, we will shortly introduce three emerging software engineering paradigms that, in
combination, have great potential for facilitating the end-user programming of the smart home. These
paradigms are visual programming, component-based software construction and connection-based
programming.

Visual Programming Languages
The development of visual programming languages (VL) has been driven by the experience that laypersons
tend to understand pictures better than plain program text. Today, visual programming languages are often
used in combination with textual languages. Moreover, visual languages and software visualization
paradigms are increasingly used for increasing human understanding of the existing program code in legacy
systems. Apart from considerations about the program business logic, the area of visual languages was
equally driven by progress in the domain of user interface design and human-computer interaction. This
paradigm has been broadly adopted with popular programming tools like Microsoft's Visual Basic or, more
recently, IBM's VisualAge for Java. Such visual programming languages typically promote event-driven
architectures. This means that the programmer does not explicitly define the control flow, but it is
implicitly determined by the occurrence of user interface events, e.g., a mouse click on a button. Both
visual programming paradigms, flow-logic diagrams and event-driven user interface designs, are
complementary rather than competing approaches. They can be integrated into a holistic solution for visual
programming.

Component Software
The idea of component software has its roots in the great success that component-based manufacturing has
had in the hardware sector. Component-based software systems are assembled from a number of pre-
existing pieces of software called software components. Software components should be (re)usable in many
different application contexts. Particularly, users should be able to use software components without
understanding their internal makeup. Thus, component-oriented software composition provides means for
reducing the complexity of software development tasks. The term Commercial-Off-the-Shelf (COTS)
component was coined in the mid 90's as a concept for a binary piece of commercial software with a well-
defined application programmer's interface and documentation. The component market has gained
momentum from the introduction of infrastructure for deploying components in programming languages
and operating systems, such as Sun Microsystem's (Enterprise) Java Beans and Microsoft's .NET
Framework. Using the component-paradigm for software construction has various benefits: it increases the
degree of abstraction during programming, provides proven (error-free) solutions for certain aspects of the
application domain, increases productivity, and facilitates maintenance and evolution of software systems.

Connection-based Programming
Traditional software programs have followed the procedure-call paradigm, where the procedure is the central
abstraction that is called by a client to accomplish a specific service. Programming in this paradigm
requires that the client has intimate knowledge about the procedures (services) provided by the server.
However, this kind of knowledge is not present in component software because it is based on components

Silvia Berti
40

from third parties that were separately developed. That is why component software requires a new
programming paradigm called connection-based programming. In connection-based programming,
connections between pieces of software are not implicitly defined by procedure calls but they are explicitly
programmed. Connections represent the glue that binds together interfaces of different software
components.

3. User-Programming of Embedded Control Software in Home Automation
In this section, we outline preliminary results of an industrial-driven, collaborative research project carried
out between the University of Victoria in B.C. Canada and Intec Automation Inc., a Victoria company in
the area of embedded systems. The project is supported by the Advanced Systems Institute of British
Columbia and the National Science and Engineering Research Council of Canada.

3.1 Embedded Programming with Visual Components
Over the last few years, Intec has investigated how the visual programming paradigm can be used to
facilitate the development of embedded control applications for industrial as well as private applications.
As a result, Intec has developed microCommander, an application for presenting a visual programming
interface to a system of embedded devices (www.microcommander.com). The software runs on a personal
computer with access to a network connecting any number of devices. All of the devices must conform to a
predefined component architecture that is recognized by microCommander. MicroCommander then allows a
user to visually program these off-the-shelf software components without having to write any source code.
Behind the scenes, each component consists of an embedded code, an interface and behavior definition, a
configure dialog, and operating dialogs (Figure 1). The embedded code containing the logic that operates a
device usually executes on micro controllers located at various places within the automated home.
Depending on the complexity of the device, a single micro controller may host the embedded code for a
number of components. The interface and behavior definition describes how to interact with the device in
terms of input and output messages. Messaging formats and policies are part of the component architecture,
and it is critical that every device in the system strictly conforms to these rules. This way it is guaranteed
that every device is addressable and properly controllable.

Operating
Dialog

Interface
Definition

Configure

Dialog
Embedded

Code

Figure 1 Aspects of microCommander Component

The configure dialog (Figure 2, right) is a visual interface for programming properties such as micro
controller input and output assignments, default values, states and so forth. This configuration setup is
generally done only once during system installation, after which the component is exclusively controlled
via the operating dialogs. The use of configure dialogs requires some domain knowledge and, thus would
typically be done by third party vendors during installation. For example, Figure 3 shows the set-up of a
new heater system controlled by a PID control component [2].

The operating dialogs (Figure 2, left) provide visual interfaces to the devices embedded within the home.
Each operating dialog is customized towards the day-to-day usage of a device by a layperson. Both
configure dialogs and operating dialogs reside within the microCommader application, and are part of its
user interface. The application contains an extensible library of visual controls that the Operating Dialogs
may utilize. MicroCommander thus acts as PC-based remote control console to the device allowing a home
owner to manipulate and visually program a home from any internet-ready PC running microCommander.

3.2 User-programming of multiple-device interaction
The tools and paradigm outlined so far are geared towards end-user programming and controlling single
embedded devices, however they do not provide means for programming automatic collaborations among
multiple devices. For this purpose, the University of Victoria and Intec Automation have jointly developed
a technology prototype called microSynergy. MicroSynergy facilitates the development and execution of
logic described with a subset of the specification and description language (SDL) [3]. Our subset of SDL
has unambiguous formal semantics and can easily be understood by a layperson. MicroSynergy consists of
a microSynergy editor and a microSynergy runtime engine. Specifications created using the editor are
downloaded to the runtime engine, which then controls the corresponding embedded devices accordingly.

Silvia Berti
41

Collaboration logic is implemented in terms of input and output messages rather than visual controls.
Editing microSynergy diagrams and establishing connections among the entities on the screen is done by
simply clicking and dragging objects using the mouse and keyboard.

Figure 3 microSynergy connector integrating three embedded control devices (left)
microSynergy SDL description that programs the internal behavior of the connector (right)

A home alarm system is an example with the need to establish elaborate logical dependencies in such a
way that the events triggered by one device cause a response in another. The home alarm system, for
example, once activated ought to trigger the lighting and video surveillance system. It should also
automatically deactivate these systems once the threat to the home has passed. This type of scenario is
easily programmed using microSynergy. Figure 3 illustrates the visual language of microSynergy. The left
side shows the system view including all collaborating devices and connector components between them.
The right side shows the internals of a sample connector. A more detailed description of the microSynergy
language is out of the scope of this paper and can be found in [3,4].

Acknowledgements
We would like to thank Intec Automation for their collaboration with this research project. Furthermore,
we thank the Advanced Systems Institute of British Columbia (ASI) for supporting the research. Finally,
thanks to Andrew McNair for his support in implementing the microSynergy editor.

References

1. Jini Technology and Emerging Network Technologies. 2001, Sun Microsystems. Online at
http://www.sun.com/jini/whitepapers/technologies.html .

2. Goodwin, Graebe, Salgado. Control System Design. Prentice Hall, 2000.
3. Mitchele-Thiel. Systems Engineering with SDL. Wiley, 1997.
4. J. Jahnke, M. d’Entremont, J. Stier. Facilitating the Programming of the Smart Home. IEEE

Wireless Communications. Vol. 9, no 6. December 2002.

Figure 2 The configure dialog (right) allows for the composition of components and customization of component parameters.
The operation dialog (left) is used for day-to-day use and control of embedded devices via the Internet.

Silvia Berti
42

EUD-Net’s Roadmap to End-User Development

Markus Klann
Fraunhofer Institute for Applied Information Technology (FhG/FIT)

Schloss Birlinghoven
53754 Sankt Augustin, Germany

+49 2241 14 2152
markus.klann@fit.fraunhofer.de

ABSTRACT
The article gives an overview of aspects, current ap-
proaches and promising strands of research for the subject
of End-User Development (EUD). It is a condensed version
of the EUD roadmap which has been produced within the
European research project EUD-Net whose aim is to foster
research and development in this field. The article con-
cludes that empowering end-users to carry out substantial
adaptations of IT-systems is an important contribution to
letting them become active members of the information
society.

Keywords
End-User Development, co-evolution, requirements engi-
neering, information society

INTRODUCTION
The subject of End-User Development (EUD) is the focus
of the ongoing European research project EUD-Net [3, 7].
The project’s definition of EUD is as follows [2]: “End
User Development is a set of activities or techniques that
allow people, who are non-professional developers, at
some point to create or modify a software artefact.”
The goal of EUD-Net is to create a joint vision of research-
ers and industry partners in this field and to provide ideas
and guidelines for future research and development. A first
step in this process has been to create a roadmap for the
field. This roadmap gives an introduction to the topic of
EUD, a survey of current approaches, methods and areas of
application and points at promising strands of research.
In order to make EUD-Net’s ongoing work available to a
wider audience, this article provides a condensed view of
the central aspects presented in EUD-Net’s roadmap.

WHAT IS EUD AND WHY IS IT IMPORTANT?
People want IT-systems to meet their requirements. Captur-
ing these requirements and letting software-professionals
implement them is a workable approach only if the re-
quirements can be identified and remain stable over time.
Very much in contrast to this the current development in
professional life, education and also in leisure time is char-

acterized by an increasing amount of change and diversity.
Changes in work and business practices, changes concern-
ing individual qualifications and preferences and changes in
the dynamic environment, organizations and individuals act
in. Diversity concerning people with different skills, knowl-
edge, cultural background and physical or cognitive abili-
ties, as well as diversity related to different tasks, contexts
and areas of work. As most of the work done in organiza-
tions, and an increasing amount of peoples’ activities out-
side of organizations is supported by IT-systems, there is a
need for substantially more flexible systems that can easily
be adapted to meet the changing and diversified require-
ments.

This insight, which developed in various fields of human-
computer-interaction (HCI) and software-engineering, has
now become focused in the new research paradigm of End-
User Development (EUD). The goal of EUD is to empower
end-users to adapt IT-systems themselves as much as possi-
ble, thus letting them become the initiators of a fast, cheap
and tight co-evolution between themselves and the systems
they are using. To allow for this level of end-user develop-
ment, IT-systems must be made considerably more flexible
and they must support the demanding task of EUD in vari-
ous ways: they must be easy to use, to teach, understand,
and learn. Also, users should find it easy to test and assess
their EUD activities.

EUD has now found its first widespread use in commercial
software, and end-users have taken it up with some success:
recording macros in word processors, setting up spread-
sheets for calculations and defining e-mail-filters. While
these applications only realize a fraction of the EUD poten-
tial and still involve many issues, they illustrate why em-
powering end-users to develop the systems they are using is
an important contribution to letting them become active
citizens of the information society. One example for future
use of EUD technology is the field of home appliances, i.e.,
all sorts of electronic devices that people will use at home
and that will become interconnected and very flexible in the
near future. This creates a mass-market where people will
want to adapt systems to their specific contexts and re-
quirements and where they will value personalized, adap-
tive and anticipatory systems.

Given estimates like that of Brad Myers [6] (Carnegie-
Mellon-University) that in 2005 there will be 55 million

Silvia Berti
43

end-users doing EUD while there will be only 2.75 million
software professionals, the importance of research on EUD
becomes apparent. Not only to limit the damage caused by
erroneous EUD activities but also to fully exploit the poten-
tial benefits of quick and precise system adaptations that
only end-users can perform at a reasonable cost.

ASPECTS OF END-USER DEVELOPMENT
Enhancing user-participation in the initial design process of
IT-systems is one step towards better capturing user re-
quirements. Research is done on providing domain-specific,
possibly graphical modeling languages that users find easy
to express their requirements in. Such modeling languages
are considered an important means to bridge the ‘communi-
cational gap’ between the technical view of the software
professionals and the domain-expert view of the end-users.

But as stated above, end-user requirements are increasingly
diversified and changing and even at a given point in time
they may be difficult to specify. Consequently, an initial
design tends to become outdated or insufficient fairly
quickly. Going through conventional development cycles
with software-professionals to keep up with evolving end-
user requirements would be too slow, time-consuming and
expensive. While end-users are generally neither skilled nor
interested in adapting their systems at the same level as
software professionals, it is very desirable to empower users
to continuously adapt their systems at a level of complexity
that is appropriate to their individual skills and situation.
Challenging the conventional view of ‘design-before-use’,
new approaches try to establish ‘design-during-use’, leading
to a process that can be termed ‘evolutionary application
development’ [5].

System changes during use might be brought about by ei-
ther explicit EUD activities of the end-users or by the sys-
tem automatically changing itself to better meet its users’
requirements. In the first case, the system is called adapt-
able, whereas in the second, adaptive.

Adaptability in the sense of EUD calls for a system flexibil-
ity that allows for adaptations that extend well beyond sim-
ple parameterizations, while being substantially easier than
(re)programming. More precisely, a system should offer a
range of different adaptation levels with increasing com-
plexity and power of expression. This is to ensure that users
can do simple adaptations easily and that they only have to
accept a proportional increase in complexity for more com-
plicated ones. This property of avoiding big steps in com-
plexity to keep a reasonable trade-off between ease-of-use
and expressiveness is what is called the ‘gentle slope’ of
complexity [1, 6]. As an example, a system might offer 3
levels: on the first, the user can set parameters and make
selections; on the second the user might integrate existing
components into the system; on the third level the user
might extend the system by programming new components.

But adapting systems to users during usage does not neces-
sarily require dedicated EUD activities by the user. Adap-
tive systems monitor their users’ behavior and other contex-

tual properties, like the current task or situation and use
different approaches, notably from Artificial Intelligence, to
automatically adapt themselves. One important approach to
increase system adaptivity is to increase this contextual
awareness by taking more contextual properties into ac-
count and to set up user models to better assess how the
users’ requirements relate to different contexts.

However, the distinction between system adaptability and
adaptivity is not so sharp in practice. Users may want to
stay in control of how systems adapt themselves and might
have to supply additional information or take certain deci-
sions to support system adaptivity. Conversely, the system
might try to preselect the pertinent EUD options for a given
context or choose an appropriate level of EUD complexity
for the current user and task at hand, thus enhancing
adaptability through adaptivity.

Apart from the system, an individual person might also be
assisted by other people in its EUD activities. Such
collaborative EUD activities [10] within groups of end-
users can be supported by repositories for sharing EUD
artifacts, as well as recommendation and awareness mecha-
nisms for EUD-artifacts and expertise. It is one goal of
current research to understand how to foster the building up
of communities of end-user developers in which knowledge
and artifacts can effectively be shared.

As for presenting EUD functionality to the end-user it is
generally acknowledged that the adaptation interface should
be unobtrusive so as not to distract user attention from the
primary task. At the same time, the cognitive load of
switching from using to adapting should be as low as possi-
ble. There seems to be a consensus that the adaptation func-
tionality should be made available as an extension to the
existing user interface.

Finally, the described level of system adaptability requires
highly flexible software architectures. Various approaches
exist, ranging from simple parameters, rules and constraints
to changeable descriptions of system behavior [8] and com-
ponent-based architectures [10]. A key feature of the more
advanced architectures is to allow for substantial changes
during run-time, i.e., without having to stop and restart or
even rebuild the system.

Practical Implications
Understandably, industry players interested in EUD are
looking for practical applicability and fast deployment,
while not being enthusiastic about major changes to their
development processes. This must be taken care of by inte-
grating EUD with existing development practices. Nonethe-
less, finding the right processes and organizational structure
for EUD development and making appropriate changes will
still be necessary. To this end, results from EUD research
must be validated in real-world projects within the industry
and the acquired experience must effectively be dissemi-
nated in adequate communities within industry and re-
search.

Silvia Berti
44

This concerns the costs of providing EUD systems and, for
example, whether there is a market for selling software
components that can be used and adapted in EUD systems.
Competition between various component vendors may
cause interoperability issues when they choose to add pro-
prietary extensions to their components to defend or extend
their market share. This has not been uncommon in the
software industry and as it constitutes a serious threat to a
widespread success of EUD, industrial standardization ef-
forts will be very important.

RESEARCH ON EUD
There are a fairly large number of research fields pertinent
to the subject of End User Development. A selection of the
most important ones is presented below, while such fields
as supportive technology (e.g. development tools) or quality
assurance for EUD (e.g. simulation environments, undo
mechanisms) had to be left out because of space constraints.
While there is not yet a stable and well-established classifi-
cation of the field of EUD, first proposals have been pre-
sented in [2] and [9].

Understanding people as EUDs
As noted above, people adapting IT-systems are at the cen-
ter of EUD research. Individuals carrying out EUD opera-
tions have to invest time and attention that they would nor-
mally focus on the task at hand. While being responsible for
their operations they run the risk of committing errors. Ac-
cordingly, research on EUD has to provide the means for
end-users to understand the consequences of their EUD
operations, carry them out as safely as possible, and to ex-
ercise an appropriate level of control. Also, end-users must
be motivated to pay the (cognitive) cost of performing EUD
operations. To this end, EUD research has to find ways of
keeping these costs at a minimum, to make operations intui-
tive, to provide assistance and to make the benefits trans-
parent and assessable. Another issue to be resolved is that
EUD beyond a certain level of complexity will require peo-
ple to acquire additional skills beforehand, which they will
have to be willing to do. Finally, doing EUD in collabora-
tion with other people will involve new communication and
work processes, as well as privacy issues, requiring appro-
priate solutions.

Organizational environment
EUD-systems must be properly embedded into their organ-
izational environment to be interoperable with existing IT-
systems to fully exploit the benefit of widespread EUD ac-
tivities within the organization and to motivate end-users to
actually carry out such activities. Conversely, EUD will
have an impact on organizational structure and processes,
allowing faster and more precise adaptations of IT-systems
to support, for example, the setting up of project-specific
team structures and collaborative processes. Research is
needed to determine how organizations must change to ex-
ploit the full potential of EUD for becoming more flexible
and powerful.

Interfaces
As EUD wants to empower end-users to perform substantial
modifications to IT-systems, while not hampering them in
their every-day work, extending user-interfaces with EUD-
functionality is as important as it is difficult. Users must be
able to understand and assess the existing system and to
specify and test their own EUD operations. Therefore, rep-
resentational formats must be devised that are especially
suitable for end-users, keeping them from making errors
typical of conventional programming languages. Research
is necessary on creating and evaluating domain-specific and
graphical (2D and 3D) formats. Interfaces should proac-
tively assist the users to explore and understand the systems
and to create and annotate new EUD artifacts. To this end,
various interesting approaches exist, like ‘interactive mi-
croworlds’, zoomable multi-scale interfaces, tangible user-
interfaces (TUIs), AR, etc. Another requirement is that
EUD functionality has to be presented as unobtrusively as
possible and only when needed, so as to deviate as little of
the users’ attention as possible from their primary task.

Generally speaking, interfaces and representational formats
play an important role in mediating communication proc-
esses between different actors (e.g. software professionals
and end-users) during initial system design as well as be-
tween groups of end-users during collaborative EUD activi-
ties.

Context-awareness
As noted above, interfaces should provide users only with
such an amount of EUD-functionality that is appropriate to
their current context. In particular, for normal use requiring
no adaptations the interfaces should generally provide no
EUD-functionality at all. Moreover, systems should proac-
tively assist their users by adapting themselves automati-
cally if sufficient information is available, or at least gener-
ating suggestions for partial solutions for the users to
choose from. In order to do this, research is needed on how
systems can build up a knowledge base by monitoring their
environment (e.g. user, task, place, time) and on how this
context-awareness can be turned into adaptive system be-
havior. One promising approach is to investigate how an
EUD-system might build up a history of its own use and of
EUD operations it has been subject to in order to generate
suggestions for future EUD operations in similar situations.

Architectures
In order to have IT-systems that are changeable at run-time
while remaining maintainable and interoperable with other
systems, it is quite obviously crucial to have appropriate
software architectures. Loose coupling between software
components through well-defined general interfaces is a
promising approach. One challenge here is to combine gen-
eral interfaces which may not be very intuitive for end-users
with domain-specific components which users know how to
handle within their domain of expertise. Another promising
approach is to add a model-layer to the architecture of IT-
systems allowing for a relatively easy modification of the
underlying system. A similar approach is not to build the

Silvia Berti
45

system behavior into the actual architecture and implemen-
tation, but to separate it into a sort of meta-description
which the system interprets during run-time. Finally, in or-
der to be able to make the current system-status understand-
able and to let end-users assess the consequences of their
operations the architectures for EUD must allow for reflex-
ivity and inspection.

Issues and Trade-offs
Enabling end-users to substantially alter IT-systems creates
a number of obvious issues concerning correctness and con-
sistency, security and privacy. One approach to handle
these issues is to let the system monitor and maintain a set
of desired system properties during EUD, like integrity and
consistency by, for example, allowing only safe operations.
But as H. Lieberman (Massachusetts Institute of Technol-
ogy) points out [4], user errors and incompleteness of in-
formation cannot be ruled out altogether, whereas users
may often be able to supply missing information or correct
errors if properly notified. For this reason, handling the
issues above may often best be done by a cooperation of
both user and system. Another issue of EUD is how to make
users aware of existing EUD functions and how to make
these functions easily accessible.

Finally, EUD research must find good solutions for a num-
ber of trade-offs created by empowering end-users to carry
out substantial adaptations at a complexity-level no higher
than needed for the task at hand. These trade-offs exist be-
tween expressiveness, freedom, and being general-purpose
on the one hand and usability, learnability, control, and
being domain-specific on the other.

CONCLUSION
EUD can be seen as an important contribution to create a
user-friendly information society where people will be able
to easily access information specific to their current context
and to their cognitive and physical abilities or disabilities.
People will have access to adapt IT-systems to their indi-
vidual requirements and the design of IT-systems can be
made more socially acceptable by collaboratively involving
all actors. Apart from empowering individuals to take part
in design processes, EUD can also support communities by
letting them share experience on how to adapt IT-systems.
In particular, communities might share EUD artifacts by
way of repositories for reusable and potentially domain-
specific components. These repositories will help people in
choosing and assembling components appropriate for their
requirements by making available the explanations, recom-
mendations and critique of their peers.
On the economic side, EUD has the potential to enhance
productivity and create a competitive advantage by empow-
ering employees to quickly and continuously adapt IT-
systems to their specific business requirements.
In EUD research much needs to be done, notably to conduct
empirical research, to develop a sound theoretical basis and
last but not least to establish a consistent and stable termi-
nology. Suggestions on concrete research and development

activities for EUD are currently being developed within
EUD-Net and will be made available as a research agenda
for the field.

ACKNOWLEDGMENTS
This article owes very much to the input of the members of
EUD-Net [3]. I’d like to thank all members of EUD-Net for
valuable documents and discussions. Funding of EUD-Net
is provided by the European Commission.

REFERENCES
1. Blackwell, A. User priorities for EUD: Review and re-

search agenda. Presentation at first EUD-Net workshop
in Pisa, Italy, 23./24. Sep. 2002. Available at [3].

2. Costabile, M. F. End-User Development - Empowering
people to flexibly employ advanced information and
communication technology. Report of the 1st EUD-Net
workshop at Pisa, Italy, 23./24. Sep. 2002. Available at
[3].

3. EUD-Net Network of Excellence.
 http://giove.cnuce.cnr.it/eud-net.htm

4. Lieberman, H. Your Wish is My Command: Program-
ming by Example for End-User Development. Presenta-
tion at first EUD-Net workshop in Pisa, Italy, 23./24.
Sep. 2002. Available at [3].

5. Mørch, A. End-user participation in evolutionary de-
velopment. Presentation at first EUD-Net workshop in
Pisa, Italy, 23./24. Sep. 2002. Available at [3].

6. Myers, B. Making Programming Easier by Making it
More Natural. Presentation at first EUD-Net workshop
in Pisa, Italy, 23./24. Sep. 2002. Available at [3].

7. Paternò, F. Introduction to the EUD-Net EU Network of
excellence. Presentation at first EUD-Net workshop in
Pisa, Italy, 23./24. Sep. 2002. Available at [3].

8. Repenning, A. End User Development: Who needs it?
Presentation at first EUD-Net workshop in Pisa, Italy,
23./24. Sep. 2002. Available at [3].

9. Sutcliffe, A. A Comparative Framework for End User
Development. Presentation at first EUD-Net workshop
in Pisa, Italy, 23./24. Sep. 2002. Available at [3].

10.Wulf, V., and Won, M. Supporting End-User Tailoring:
Component-Based Approaches. Presentation at first
EUD-Net workshop in Pisa, Italy, 23./24. Sep. 2002.
Available at [3]

Silvia Berti
46

Objects for Users
End-User Development of a Cooperative Information

Model

Barbara Kleinen
Institute for Multimedia and Interactive Systems

University of Luebeck,
Media Docks, Willy-Brandt-Allee 31a, 23554 Lübeck

+49 451 2803 4204
kleinen@imis.uni-luebeck.de

ABSTRACT
Object oriented methods started with the vision of making
computer power available to all users. This paper
introduces an approach in which again malleable objects
are the key element of an empowerment strategy. The goal
is to offer a cooperation support to virtual teams, which is
adaptable to evolving structure and organization of the
cooperative work. In the described approach, the common
information space offers a generic set of functionality to
access (display, alter and store) shared objects, whereas the
users define and alter the object structure incrementally to
adapt the information model to their needs and goals.

Keywords
tailorable groupware, information modeling, flexible
objects, common information space

INTRODUCTION
In this position paper, I’ll introduce the approach to end-
user development taken within the Cooperation
Infrastructure. The Cooperation Infrastructure (CI)1 is a
collaborative platform offering an information space based
on a tailorable information model. The CI is part of my
dissertation on CSCW and Virtual Teams, as well as the
underpinning of a knowledge archive system used to
support collocated learning at universities.2
Information exchange as well as flexible cooperation
support have been identified as key functionalities of
groupware systems supporting Virtual Teams. The
Cooperation Infrastructure provides a shared information
space which allows for user’s definition and modeling of its
information structure. As the modeling can be done
throughout the course of the work with the platform, it
allows for an evolutionary refinement of the structure,
based on its application and experiences in the work
situation.
The approach taken within the Cooperation Infrastructure is
rooted in three lines of thought:

1 http://www.infrastructure.de
2 http://www.wisspro.de

First, it builds upon the visions of object-oriented
programming, aiming at making computer power accessible
to all users by offering them the simple metaphor of
everything being an object accessible through a generic set
of functions.
Second, it builds upon the idea of meeting facilitation
techniques, which support a collection of ideas prior to their
categorization or structuring, resulting in a structure that is
based upon actual data/experiences and is supported by all
participants.
Third, the approach was informed by refactoring techniques
known and used in the context of Extreme Programming.
In the following, after motivating the need for flexibility
and tailoring in Virtual Teams, I’ll describe the tailorability
of the information model within the CI in respects to the
mentioned traditions.

MOTIVATION: FLEXIBILITY IN VIRTUAL TEAMS
Teams which organize themselves dynamically in order to
accomplish a special task (I call Virtual Teams), need
corresponding flexible cooperation support. Flexible
support has been exploited for process structuring in the
field of workflow management (see, for example [1]), by
techniques like feature composition (e.g., [2]), as well as for
the filing of documents [3]. According to Harrison and
Dourish, the ability to change an information space is also
an important precondition for the appropriation virtual
spaces, turning them into an actual place for cooperation
[4]. In contrast to these approaches, the approach taken
within the Cooperation Infrastructure aims at flexibility of
the information model or domain model.

OBJECT METAPHOR
Early implementations of the object metaphor aimed at
providing “computer support for the creative spirit in
everyone” [5]. They tried to accomplish this by providing a
simple and strong metaphor to computer systems, the
metaphor of communicating objects. While object oriented
methods have proven to be useful for software engineering,
they have not been widely adopted to support personal
work, neither by end users nor programmers.

Silvia Berti
47

The basis for the tailorability of the Cooperation
Infrastructure lies in the observation that many groupware
tools consist of three basic functionalities: persistent storage
of objects, their display in collections or in detailed views,
and means to create, edit or delete objects. Between
different applications, only the type of objects changes; as
do the fields (properties) of the objects according to their
type. For instance, a message board application would
display a collection of messages, listing their sender and
subject, a task coordination tool a list of tasks with due
dates, committed participants and dependencies on other
tasks etc. Accordingly, the Cooperation Infrastructure offers
the generic functionality of storing, displaying, and altering
shared objects, leaving the definition of the object structure
open to the end user. As a common information space, these
functionalities are accessible to several users
simultaneously with common features like conflict
management; awareness support etc. Figure 1 shows the
display of a collection of objects. The mentioned generic
functionalities are accessible via a web interface.
The CI information space is tailorable during the course of
its use in three main aspects: New classes of objects may be
added, the class fields may be defined and altered using a
class definition and – possibly several – views may be
defined for the class. Views specify the set of fields
displayed in a specific context.

Figure 1: Display of a collection of objects

As class definitions are themselves objects in the CI, they
can be created, altered and displayed using the generic
functionality for handling objects. Furthermore, changes to
class definitions can be made during runtime taking
immediate effect. Class definitions are global to the
application and therefore immediately visible to all users
(depending on access rights) and are thus group-wide
adaptations. Individual tailoring can be achieved by
subclassing or definition of individual views.
The generic functions enable users to immediately start
working with shared objects, without the need for any
programming beforehand. To support an evolutionary
development of the classes, objects may hold arbitrary

fields, independent of their class definition, supporting the
pattern of finding a structure based on collected
information, as will be described in the next section.

COLLABORATIVE INTERPRETATION
Computers usually impose a need for prestructuring
information, most prominent in the definition of an
information model in an early phase of system
development, or the hierarchical organization of file
systems [3].
The ubiquitous need to classify information prior to its
storage, often hinders the flow of work with an information
system. We experienced this with a cooperative hypermedia
system3, were the sheer need to name a new node prior to
creating it severely hindered its use for creative work. As
Dourish points out, “prestructuring information was a
performance hack” [6], at times when computing power was
expensive. With the availability of cheap computing power,
we should start optimizing for people. According to the
prior described experiences, the optimization for users
includes the possibility to store something without the need
to categorize it [3].
A process of collecting information fragments first and
collaboratively finding a structure based on these fragments
later has been described in various contexts. It is known in
the context of meeting facilitation, using colored paper
cards and a pinboard to generate, structure and judge ideas.
Similar facilitation and brainstorming methods have also
been implemented in electronic meeting systems. Most
tools for creative work allow for or foster a creation and
collection of ideas without prior judgment, classification or
structuring, as an immediate or prior classification would
impede the flow of thoughts.
According to Cox and Greenberg, who presented a tool to
support a similar group process they call “collaborative
interpretation” [7], I name the process of collecting
information first and finding a structure for it later
“collaborative interpretation”.
In several other contexts, processes of alternating collecting
and structuring are described. Wenger described the duality
and interplay of participation and reification as a
fundamental process to produce meaning in Communities
of Practice [8].

Collecting Information Fragments
Inspired by the above mentioned methods for group
facilitation and creative work, allowing the input of
information prior to any structuring or even naming has
been the main design principle of the Cooperation
Infrastructure.
Collecting information may occur as part of a dedicated
effort like a brainstorming, or in the course of ordinary

3 HyperCom, developed at former Daimler Benz Research

in Berlin.

Silvia Berti
48

work with the system, by adding or altering objects in the
information space, like new task descriptions or messages.
Accordingly, the Cooperation Infrastructure supports the
collection of information fragments in two ways:

1. With a creative work and facilitation support tool
with the visual metaphor of colored cards pinned
to a pinboard, called “Linked Sketches” (Figure
2.) The cards can be spatially structured just like
the paper cards. The Linked Sketches tool is
similar to PReSS [7] with the main difference of
being integrated with the hypermedia information
space of the Cooperation Infrastructure, and
allowing for visual and hypertext links between the
cards and to other objects.

2. Adding and editing objects. The creation of
objects is highly independent from any predefined
structure, as new fields may be added to instances
independent of their class definition (Figure 3).
New fields may even remain unnamed. In the
above mentioned example of a task management
application, a member may spontaneously add
“This took me 5 hours!!!” during editing the task
to mark its completion.

Reflection and Structuring of Collected Information
Fragments
To reflect the usage of classes (all tasks, all messages) the
Cooperation Infrastructure shows a list of all instances in a
table (table of instances). Using this table, the group can
reflect on their usage of the class by examining which fields
they actually used and which fields were added to instances.
As the table also shows the content of the fields, names for
yet unnamed fields may be found collaboratively, creating a
naming that is understood by the whole group. The class
definition can then be altered by the group according to the
reflection on actual use of instances of the class.
Note that unnamed fields may be of value for the
cooperative work, as the spontaneously added remark “This
took me 5 hours” is immediately accessible to all users
reading the task description. In other examples, the addition
of a new, unnamed field to a single instance may be of little
or not the intended use, as if, for example, someone adds
“read this immediately” to a message in the message board.
Therefore, as a further tailoring, specialized views may be
defined for classes, defining which fields are actually shown
in the overview and detailed view. After naming the “read
this immediately” field and including it in the collection
view definition, messages are listed with their respective
priority, now being of practical use to the participants.
The reflection on class usage may also reveal
inconsistencies, like inconsistent field names or duplicate
objects. Resolving those depends on the ability of changing
the information structure without loosing data, which I call
refactoring.

Figure 2: Facilitation Tool "Linked Sketches"

Figure 3: Addition of new fields to an object

REFACTORING: RESTRUCTURING OF INFORMATION
Refactoring denotes the change of a program’s architecture
without modifying its behavior or functionality [9], which
may be a necessary step in agile development process to
accommodate the implementation of new requirements.
Within the context of the Cooperation Infrastructure, I use
the term refactoring for the reorganization of the
information model without loosing the collected data.
Typical refactorings are:
• renaming of fields
• merging of objects
• movement of fields between objects
• reclassification of objects
All but the last refactoring can be applied to instances as
well as classes. Changes on the class level trigger
corresponding changes of all instances, to preserve the
collected information and integrate it into the new
information structure.
Refactorings are conducted using the generic object editor,
or, in more complex cases, the group facilitation tool.
Figure 2 shows a modeling of a task management
application.

Silvia Berti
49

Using these refactorings; late changes to the information
model are possible, reflecting and incorporating already
collected data.

INFORMATION MODELING WITHIN THE CI
Using the described techniques, the information model is
evolutionary developed in the following way:
In an initial meeting a first draft of the information model is
defined. Often predefined applications can be used, e.g. a
message board application or a task and file management
application. The definition of the classes has to be done by
someone who is already familiar with the Cooperation
Infrastructure. This might be a member of the team who has
worked with the CI before, or an external facilitator. After
the primary definition of classes the group starts to
collaborate using the tool, creating and editing objects
within the predefined structure. Team members unfamiliar
with the CI usually find it easy to start using the CI at this
point. During this phase, the information model may be
changed partially by adding new fields to object instances.
At a convenient time – depending on the collaborative
setting – the group meets and reflects on their usage of the
infrastructure. Classes may then be restructured and refined
based on the collected data. Through the discussion of the
structure within the group, reflecting and incorporating all
occurred uses, the team arrives at an information model
understood and supported by all team members.

EXPERIENCES AND DISCUSSION
Until now, the Cooperation Infrastructure was used in
several research projects and courses at out institute.
Experiences show that it is well possible to create a
specialized information model containing 2-3 new classes
during a first group meeting, leading to immediate benefit
to the group members. Even novice users had no problems
using the specialized model by navigation the CI and
creating new objects. Some users were confused by the
input areas for new fields (Figure 3) as they felt obliged to
put something there but did not know what. Consequently,
the interface was adapted for some user groups, hiding the
altering of structure (new fields, links to class and view
definitions) altogether. In these cases, reflection of the class
usage only included the usage of predefined fields.
Our experiences showed that the adaptation of the
information model led to a quite specialized cooperation
support. In some cases, a functional extension was
necessary, which was added using the Java /JSP API
offered by the CI.
But even without functional extensions, the extension of the
information model leads to an immediate benefit to the
group. This information model, which is based on actual
experiences within the group, may furthermore inform the
development of new functionality and ease the
communication between users and developers.

CONCLUSION
In this position paper, an approach of a flexible cooperation
support, the Cooperation Infrastructure (CI) is presented. In
the CI, users can model the information structure during the
course of their work with the system. Users may reflect on
their usage of the information model and change it
according to their needs.
While the CI does not support the addition of new
functionality by end users, users can create applications by
adding new objects and class definitions, using a predefined
set of generic functionality on objects, like storing,
displaying and altering them.
The described tension between designing for smooth usage
by experienced users and creating comprehensible
interfaces for novice users resulted in a division of the
interfaces. Further work will concentrate on the issue of
providing specialized interfaces and easing the transition
from object usage to expanding and altering the information
structure.

REFERENCES
1. Divitini, M.; Simone C.: Supporting Different

Dimensions of Adaptability in Workflow Modeling.
Journal of Computer Supported Cooperative Work Vol.
9: 365-397, 2000.

2. Teege, G.: Users as Composers: Parts and Features as
a Basis for Tailorability in CSCW Systems. Journal of
Computer Supported Cooperative Work Vol. 9: 101–
122, 2000.

3. Dourish, P.: The Appropriation of Interactive
Technologies: Some Lessons from Placeless
Documents. To appear in: Journal of Computer-
Supported Cooperative Work, Vol. 12, 2003

4. Harrison S.; Dourish P.: Re-Place-ing Space: The Roles
of Place and Space in Collaborative Systems.
Proceedings of the 1996 ACM conference on Computer
supported cooperative work: 67-76, 1996.

5. Ingalls, D.: Design Principles behind Smalltalk. In:
BYTE Magazine, August 1981.

6. Dourish, P.: Information and its Structuring: Problems
and Opportunities. Talk at UCLA, Jan. 25, 2001.
Available at http://www.ics.uci.edu/~jpd/

7. Cox D.; Greenberg S. Supporting collaborative
interpretation in distributed Groupware. In:
Proceedings of the ACM Conference on Computer
Supported Cooperative Work (CSCW 2000).
Philadelphia: ACM, 289-298, 2000.

8. Wenger, E. 1998. Communities of Practice. Cambridge:
Cambridge University Press.

9. Fowler, Martin: Refactoring: Improving the Design of
Existing Code. Boston: Addison-Wesley, 1999.

Silvia Berti
50

Toward a Culture of End-User Programming
Understanding Communication about Extending Applications

Cecília Kremer Vieira da Cunha and Clarisse Sieckenius de Souza
Semiotic Engineering Research Group

Pontifícia Universidade Católica do Rio de Janeiro
R. Marquês de São Vicente 225 - Rio de Janeiro - RJ - 22453-900 - Brazil

+55-21-2512-5984 ext. 123
{ceciliak, clarisse}@tecgraf.puc-rio.br

ABSTRACT
End-User Programming (EUP) research has mainly
explored tailoring mechanisms and how to make them
accessible to end-users. Complementary, other EUP studies
have pointed at the importance of dealing with the
collaborative practices related to the process of application
extension, whose focus is the social matrix that is the
context of application use. Following this direction, we
propose the exploration of a research path that directly
tackles communication about application extension. The
goal is to provide better support to the development of a
tailoring culture. As a first step, we present some initial
findings on how users go about communicating with
designers and suggesting extensions to an application.
Further exploration of these initial findings may point out
to communicative resources that should be made available
in tools and on-line communities developed to support and
popularize EUP. Theoretical foundations that can support
this research path are also pointed out.

INTRODUCTION
Despite successful reports on the use of End-User
Programming (EUP) solutions, this technology has not yet
reached widespread adoption [8]. We have not yet achieved
an overall “tailoring culture” [10] in which users feel
ownership of the software they use and feel in control of
changing it and understanding what can be changed. Two
routes to make systems more tailorable have been pointed
out [10]. One is to make tailoring mechanisms accessible,
in which there is ideally a linear and increasing trade-off
gradient regarding the effort spent on learning how to use a
mechanism and the correspondent tailorability power it
provides. Research in EUP has mainly explored this route
and several solutions have been proposed [3, 8] ranging
from parameter configuration, which requires a low-
cognitive effort but usually does not provide high
tailorability power, to visual formalisms, which are more
powerful but require greater learning efforts. The second
route is to approach tailoring as community effort.
This approach is crucial for designers of EUP systems who
are willing to foster a tailoring culture, since a culture
emerges from socially shared cognition. A culture can be
viewed as “a set of thoughts that are shared among group
members” [7, p. 258], and this sharing of thoughts and
development of common ground [1] strongly depends on
communication processes.

Empirical investigations about EUP have shown evidence
that these communication processes do happen [11,9,10,12]
and have discussed some of their challenges. One of these
challenges is what can be called the culture of the worker
[10]. It is formed by people who have no interest in
computer systems per se, who are focused on their work
and have no expectation of tailoring a system or controlling
its changes. Thus, they are not in a good position to explore
and assess what changes might be possible or how to go
about undertaking them. As a consequence, communicating
ideas or requirements to cope with an application’s
limitation is likely to be problematic. They typically do not
know exactly what to say or how to say it, or how to make
others (e.g. programmers) understand what they need.
Ideally, end-users should have access to the gradient of
EUP mechanisms mentioned before and, as they climbed
from the simpler and easier extension mechanisms to the
more complex and powerful ones, the more articulate and
effective they would become in either achieving their
extension goals or communicating them to programmers
more successfully. But how helpful are the different EUP
mechanisms we have today as part of the global
representation and communication processes that go on in
workplaces? Do the representations they offer support
communication within the community that uses it? How
can designers of EUP systems better support not only
human-computer interaction, but also the development of a
culture?
To answer these questions, the EUP research agenda needs
to include studies that take a closer look at how end-users
communicate about application extensions, broadening the
spectrum of EUP analysis with respect of its social scale.
This research examines the representations used in
communication, provides designers of EUP systems with
insights about this process and can ultimately provide a
perspective to be explored in the design and evaluation of
extensible systems.
As a first step in this direction, we present a summary of a
preliminary empirical study we have carried out [5].

EMPIRICAL STUDY
A small group of users was asked to explore a non-
extensible application and document, for the application
designer, the extensions they would add to it.
Communication in paper form was chosen in order to allow

Silvia Berti
51

users to reflect about their suggestions before delivering
them. Proposing extensions involves creating new
meanings and extenders may want to ponder about different
alternatives and the impact of introducing an extension to a
system. Therefore, asynchronous communication was
found more suitable [1]. As a result, users freely expressed
themselves and we were analyzed the representations used.
We developed a very simple application in which a user
could register the ownership of some material (e.g. book);
loan it (recording when it was loaned, to whom, and its
return date); register its return; and visualize current loans.
Visualization is the only functionality available to both
owners and borrowers.
The application was built in a deliberately simplistic form,
with only one way of performing these tasks, in order to
stimulate users to propose extensions. The application also
has a collaborative facet, if one considers that it reflects and
therefore impacts on the specific collaborative practice of
loaning in this group of users. This facet is beneficial to our
purposes because of the crucial importance that
communication plays in collaborative settings. It provides
a rich environment to indicate which communication
processes can emerge in extension tasks, as users tend to
use the existing social network to do so [9, 11].
Six users from an academic environment were quickly
trained to use the application. They all knew how to build a
computer program, although not all of them were
experienced programmers. We expected these users to
know what extensions and extensible applications are. So,
after exploring the application for some time, they were
asked to propose extensions they would desire and to
document them on paper, knowing their proposals would
be read by the application designer. They received a simple
form in which they filled out the proposal’s author name
and brief description. They also received representations of
the application that could be used, shown in Figures 1, 2, 3
and 4. Figure 3 shows an abstract representation of the
interconnected interfaces that embodied each activity.
These representations were offered by the designer just as
support material. Participants in the experiment were not
required to use them, or even to understand them.

Figure 1. Simplified Conceptual Diagram

We selected these representations because they involve
different perspectives of the application as well as different
levels of abstraction. We understand our selection is
arguable and other representations should be considered in
the future, although participants should not be
overwhelmed with too many of them.
About an hour later, the participants spontaneously finished
their job and we analyzed the material they handed in.

Figure 2. Activity Diagram

Figure 3. Interface Network of Loan Activity

*there should be control of material quantity

Figure 4. Extension Documentation in a Window Snapshot

Result Analysis
The participants proposed 45 extensions altogether. The
extensions’ granularity varied considerably, spanning from
a button label change to a storyboard of 3 different screens.

*

Material Condition : New

Old
Broken
…..

Owner Borrower

Material

Description

Person

Name
E-mail
Login

loan date
expected return date

Loan of
Material
Owner

Return of
Material

Owner

Register of
Material

Owner

Current Loans
Visualization

Owner,Borrower

 Loan
Confirmed

Owner

Date
Validation

Owner

Borrower
Data

Owner

Fill Out
Loan

Information

Owner

processing navigation

Silvia Berti
52

All extensions had at least a brief description in natural
language (NL), required in the fill-out form. NL was also
used to explain and give feedback about the
representations; to describe and explain an extension or part
of it, its functioning and rules of functioning; to justify the
creation of the extension; to make considerations and
analogies; and to document synchronous communications
with the evaluator during the test. In many cases, NL texts
were used within the context of a window snapshot, as
depicted in Figure 4. Pointers (e.g. arrows) and markers
(e.g. ‘*’) were used to connect interface elements to NL
texts describing the extension.
Of the 45 extensions, 17,7% was documented solely in NL
texts. All others used from one to three representations in
addition to NL, including the representations provided and
screen layouts drawn from scratch.
Most extensions (77,7%) were expressed in NL plus 1 or 2
other representations. The distribution of extensions over
these representations is as follows (one extension may have
been documented in more than one representation):
• Window snapshots: used in 62,2% of the extensions’

documentation;
• Screen layouts drawn from scratch: 33,3%;
• Class Diagram: 15,5%;
• Interface Networks: 6,6%; and
• Activity Diagram: 2,2%.
In sum, the extensions’ documentation relied more heavily
on concrete representations rather than abstract ones.
We have also identified categories of extensions. One
extension could fit in more than one category, as follows
(parentheses in the end indicate the percentage of
extensions that fell into that category):
• Information visualization: users wanted to format

information (e.g. table instead of list form), add or hide
information, confirmation or error messages. (51,1%)

• Creation of a new class or attribute, such as the
borrowers’ phone number and loan history. (28,8%)

• Creation of a new function, such as email. (22,2%)
• Data update, achieving higher-order goals (e.g.

updating a return date achieves postponing). (13,3%)
• Creation of a new activity, which is different from a

new function since it is a high-level functionality,
usually a new main menu item (e.g. material
reservation, loan transfer or postponing). (11,1%)

• Role change: borrowers were suggested a more active
role (e.g. registering loans). (6,6%)

• Extension automatic generation: a participant wanted
to add a button to the loaning interface which, when
pressed, would add a sub-item to the Loan menu item
labeled with the currently selected borrower’s name.
When triggered, this sub-item would show the loaning
interface for the pre-specified borrower. (4,4%)

• Repetitive task automation: the previous extension was
also categorized into this one, since it allows users to
automate loaning to a frequent borrower (2,2%).

Window snapshots were the most used representation in all
categories except for one (creation of a new activity),
always immediately followed or introduced by screen
layouts drawn from scratch. Not surprisingly, the class
diagram was useful mainly for extensions that created a
new attribute or class, and the activity diagram was useful
for the documentation of new activities. The interface
network was used for new functions and data update.
Five of the 6 users used at least one of the non-NL
application representations provided. All users used
Window snapshots and drew screen layouts from scratch.
Four of the 5 users used the more abstract representations:
3 of them used the interface network and the class diagram
and one used the activity diagram. One user disregarded all
representations and used blank papers to draw storyboards.
In the future, we plan to look for criteria that distinguish
users and their preferred representations.
A surprising result was that 2 of the 6 users, who had been
exposed to the concept of EUP, demonstrated to be unsure
about what extensions were. One of them wrote: “I am not
sure whether this is an extension or a new functionality”.
This shows that bridging the gap from having an idea of
what extensions are and actually performing them raises
doubts and uncertainty. EUP studies show the importance
of having someone within the community to help users
bridge such gap, such as translators [9]. Our goal with this
work is also to find ways to support this person by
examining resources that can be useful for their role. These
resources should also be useful in environments of
publication and exchange of extensions [14].

CONCLUDING REMARKS AND FUTURE WORKS
We have described some initial findings on how users go
about communicating with designers and suggesting
extensions to an application. These findings indicate that
users will potentially use natural language in conjunction
with some other form of more concrete representation,
usually existing or new interface layouts that act as
referential anchors for their ideas. More abstract
representations have been used in specific situations, such
as the creation of a new class or attribute within the
application domain.
Some of our results may seem similar to previous ones such
as [13, 15], but we would like to point out that these studies
focused on natural communication about problem solving
with the goal of designing more natural EUP languages.
The goal of our work is rather to understand how workers,
translators and programmers communicate and help each
other to master a EUP language and achieve extension. We
want to find out how the EUP language integrate with the
global representation and communication processes that go
on in workplaces and how we can support designers of
EUP systems to foster the development of a culture of
EUP.A research path that directly tackles communication
about application extension may provide better support to
the development of a common ground on EUP that can lead
to a tailoring culture.

Silvia Berti
53

Our preliminary findings demonstrate the potential for such
a pursuit, in which guidelines for the development and
support of a more widespread use of EUP technology may
rise. For instance, from further studies, we may achieve
guidelines to the development of tools to assist translators
or on-line communities that involve workers, translators
and programmers of an extensible application. Guidelines
such as the following may emerge: “users prefer to
communicate their ideas of extensions along with the
original application or its interface snapshots in an editable
form, so that they can refer to it, alter it, and compare and
contrast their requirements to what has already been built”;
or “EUP systems should allow the sharing of incomplete
code among different users so they can discuss it” (graceful
degradation from completely to incompletely coded
extensions to be used as communicative resources has been
discussed elsewhere [5]).
For this research path we propose, more empirical and
theoretical studies should be undertaken. In order to
confirm or revise our initial findings and obtain more
useful and reliable results, several other aspects within and
outside the scope of this small non-extensible application
still need to be investigated. We need to undertake
empirical investigations with a different set of participants
and in natural settings, as a part of a long-term
commitment. This will enable the observation of naturally
occurring communication within a user community,
involving workers and others. There is also need to observe
these phenomena in other application domains.
There are also theoretical foundations to be relied upon.
Semiotic Engineering studies the creation and sharing of
meanings and signs within the scope of HCI and EUP [2,
15, 4]. Distributed cognition [6] encompasses interactions
between people and with resources and materials in the
environment. More than that, it looks at how
representations in the material world provide opportunities
to reorganize the distributed cognitive system, which is the
case of extensible applications. Distributed cognition
distinguishes at least three kinds of distribution of cognitive
processes: across members of a social group; involving
coordination between internal and external (material or
environmental) structures; and through time in a way that
the products of earlier events can transform the nature of
later events. EUP studies have tackled distribution across
members in a community [11,9,10,12]. We believe these
studies can be enriched with a perspective on the
coordination between members of a community and the
representations they are provided with as (potential)
integrants of their culture.

REFERENCES
1. Clark, H. H. and Brennan, S. E. Grounding in

Communication. In Resnick, L. B., Levine, J. M. e
Teasley, S. D. (eds.) Socially Shared Cognition.
American Psychological Association. Washington, DC.
1991.

2. de Souza, C.S.; Barbosa, S.D.J.; Silva, S.R.P. Semiotic
engineering principles for evaluating end-user
programming environments. Interacting with
Computers 13 (2001), 467-495.

3. Cypher, A. (eds.) Watch What I Do: Programming by
Demonstration. The MIT Press. 1993.

4. Cunha, C. K. V., de Souza, C. S., Quental, V. S. T. D.
B. and Schwabe, D. A Model for Extensible Web-based
Information Intensive Task Oriented Systems, in
Proceedings of HCI2000 (2000). Springer-Verlag. 205-
219.

5. Cunha, C. K. V. Um Modelo Semiótico dos Processos
de Comunicação Relacionados à Atividade de Extensão
à Aplicação por Usuários Finais. Doctoral Dissertation
(2001). Computer Science Department. PUC-Rio. Rio
de Janeiro, RJ. Brazil.

6. Hollan, J., Hutchins, E. and Kirsh, D. Distributed
Cognition: Toward a New Foundation for Human-
Computer Interaction Research. ACM Transactions on
Computer-Human Interaction 7, 2 (2000), 174-196.

7. Levine, J. M. and Moreland, R. L. Culture and
Socialization in Work Groups. In Resnick, L. B.,
Levine, J. M. and Teasley, S. D. (eds.) Socially Shared
Cognition. American Psychological Association.
Washington, DC. 1991.

8. Lieberman, H. (eds.) Your Wish is My Command -
Programming by Example. Morgan Kaufmann. 2001.

9. Mackay, W. Patterns of Sharing Customizable
Software, in Proceedings of CSCW’90 (1990). ACM
Press, 209-221.

10. MacLean, A., Carter, K., Lövstrand, L. and Moran, T.
User-Tailorable Systems: Pressing the Issues with
Buttons, in Proceedings of CHI’90 (1990). ACM Press,
175-182.

11. Nardi, B. A Small Matter of Programming. The MIT
Press. 1993.

12. Nardi, B. and Miller, J. Twinkling Lights and Nested
Loops: Distributed Problem Solving and Spreadsheet
Development. International Journal of Man-Machine
Studies 34 (1990), 161-184.

13. Pane, J. F., Ratanamahatana, C. A. and Myers, B. A.
Studying the language and structure in Non-
programmers’ Solutions to Programming Problems.
International Journal of Man-Machine Studies 54
(2001), 237-264.

14. Repenning, A., and Ambach, J. The Agentsheets
Behavior Exchange: Supporting Social Behavior
Processing, in Proceedings of CHI’97 (1997). ACM
Press, 26-27.

15. Silva, S. R. P. Um Modelo Semiótico para Programação
por Usuários Finais. Doctoral Dissertation (2000).
Computer Science Department. PUC-Rio. Rio de
Janeiro, RJ. Brazil

Silvia Berti
54

Feasibility Studies for Programming in Natural Language

Henry Lieberman and Hugo Liu
MIT Media Lab

We think it is time to take another look at an old dream -- that one could program a computer by
speaking to it in natural language. Programming in natural language might seem impossible, because it
would appear to require complete natural language understanding and dealing with the vagueness of
human descriptions of programs. But we think that several developments might now make
programming in natural language feasible:

• Improved language technology. While complete natural language understanding still remains
out of reach, we think that there is a chance that recent improvements in robust broad-coverage
parsing, semantically-informed syntactic parsing and chunking, and the successful deployment
of natural language command-and-control systems might enable enough partial understanding
to get a practical system off the ground.

• Mixed-initiative dialogue. We don't expect that a user would simply "read the code aloud".
Instead, we believe that the user and the system should have a conversation about the program.
The system should try as hard as it can to interpret the what the user chooses to say about the
program, and ask then the user about what it doesn't understand, to supply missing information,
and to correct misconceptions.

• Programming by Example. We'll adopt a show and tell methodology, which combines natural
language descriptions with concrete example-based demonstrations. Sometimes it's easier to
demonstrate what you want then to describe it in words. The user can tell the system "here's
what I want", and the system can verify its understanding with "Is this what you mean?". This
will make the system more fail-soft in the case where the language cannot be directly
understood.

To assess the feasibility of this project, as a first step, we are studying how non-programming users
describe programs in unconstrained natural language. Working with some scenarios from CMU's
Natural Programming Project, we are exploring how to design dialogs that help the user make precise
their intentions for the program, while constraining them as little as possible.

Silvia Berti
55

Using Domain Models for Data Characterization in PBE

José A. Macías and Pablo Castells
Escuela Politécnica Superior, Universidad Autónoma de Madrid

Ctra. de Colmenar Viejo km. 15
28049 Madrid, Spain

+34-91-348{2241, 2284}
{j.macias, pablo.castells}@uam.es

INTRODUCTION
One of the main problems in PBE inferencing is that of
deriving abstract data characterizations from concrete
objects and values involved in user’s manipulations [8]. This
involves selecting variables and constants
(parameterization), and establishing what variables
represent. Some variables will be input parameters of the
construct or procedure inferred by the PBE system, and
some will be expressions that indicate values or objects that
are obtained from input parameters by traversing a data
structure made of relations, lists and attributes. Our
contribution to this workshop sets the focus on the use of
rich descriptions of application data to achieve correct and
expressive data characterizations.

Data models, or the wider and more conceptual notion of
domain models [21], provide an understanding of the
knowledge behind the visual representations that the user
manipulates in a PBE system. This knowledge can be
extremely useful to make sense of the user’s actions on
visual objects. It can help, for instance, select variables, find
relations between visual objects, focus attention on special
objects, mark out composite display units, build complex
data flow expressions, and disambiguate the intended
meaning of user’s actions. How to best exploit this
knowledge; how to keep track of the relation from visual
objects back to the domain knowledge items they correspond
to; how much of the domain model should the user be
exposed to an in what form; what kind, if any, of underlying
representation should be used for the user interface, are a
few of the difficult problems and issues that we will put
forward and discuss here.

VISIBLE APPLICATION DATA EXAMPLES
Our previous experience in this context includes research on
an interface development environment, HandsOn [3, 4],
where the interface designer can manipulate explicit
examples of application data at design-time to build custom
dynamic displays that depend on application data at run-
time. [3] shows how HandsOn can be used to generate the
well-known Minard chart showing Napoleon’s march to
Moscow (partially shown in Figure 1), consisting of a
sequence of line segments whose thickness, color, and
endpoints represent the number of troops in Napoleon’s

army, the temperature, and the geographical coordinates
respectively.

Rather than building a generic display, the designer
constructs specific displays using specific data and HandsOn
generates abstract constructs by generalizing the examples.
The data examples disappear when the PBE system infers
generic displays, where concrete values are replaced by
variables and expressions whose values are computed at
runtime.

In HandsOn the user is exposed to the application data
model through an explicit view of data examples next to the
interface design area (see Figure 1). The design tool allows
connecting data to visual components by pointing at and
dragging data and display elements. Data examples provide
the designer with concrete objects to refer to, and they
provide the system with information that the system uses to
infer the designer’s intent.

Figure 1. Linking interface objects to data examples in

HandsOn

HandsOn analyzes the types and structural properties (e.g.
iteration and recursion) of the data to automatically generate
presentation constructs. In doing so, the system also
examines visual properties and geometric relationships
among the objects being manipulated, existing mappings
from data to presentations, and the way data is being seen by
the designer (e.g. expanded nodes, selected values, focused
structures). For instance, if a visual object displays a value
that belongs to a list, HandsOn suggests to create a list of
visual objects to display the remaining list values. Similarly,
recursive display structures can be generated for recursive
data structures.

Overall, the types of decisions that HandsOn is able to make
include:

Silvia Berti
56

§ Mapping data structures to custom display structures.

§ Generating and adjusting transformation functions (e.g.
scaling, type conversion) between display parameters
(e.g. endpoints of a line) and application values (e.g.
geographic coordinates).

§ Propagating changes over replicated objects across
display structures.

§ Replacing example values by variables and expressions
when the design is finished.

HandsOn uses a highly structured and sophisticated internal
model of interface displays, based on the presentation model
of an existing model-based GUI development tool,
Mastermind [2], which supports dynamic presentation
functionalities. HandsOn was entirely implemented in
Amulet [18], a high-level user interface toolkit that provides
a) a constraint system that we used to link display
components to application data, and b) an easily inspectable
object-based representation of user interfaces that facilitates
the exploration of the interface structure.

ONTOLOGY-BASED DOMAIN MODELS FOR DYNAMIC
WEB PAGE AUTHORING
In some cases it may be useful to extend the notion of data
model to the more conceptual notion of domain model [19],
because 1) it provides an even richer description and a
deeper understanding of the application knowledge behind
what the user sees, and 2) the usage and availability of
explicit domain models is becoming increasingly common in
knowledge-based applications on the WWW. Under this
view, the notion of knowledge base takes the place of
application data.

The generalization of the WWW as a universal computing
platform, and the unprecedented size of application user
communities it bears, has motivated us to take it as an
interesting ground for end-user programming research.
Starting from the observation that most of today’s WWW is
made of dynamically generated web pages, and the fact that
development of dynamic pages is considerably difficult and
requires advanced programming skills, we have taken up the
challenge of devising an interactive authoring tool where
dynamic web pages can be edited in a WYSIWYG
environment similar to a standard HTML editor [15, 22].

In order to tackle such a difficult problem, we have
considered the assumption that a domain model and a
presentation model are available. We assume an ontology-
based domain description [9], and a specification of
presentation on a per-class basis. We believe these
assumptions are congruent with important trends in current
web technology. The emerging semantic web view [1]
promotes the construction and widespread availability of
explicit models of domain knowledge. Simultaneously, a
major recurring motto in the development of the new web
technologies is the separation of data (domain knowledge)
and presentation (e.g. XML+XSLT, see also XMLC [23],
Cuypers [19], PEGASUS [5], to name a few).

The DESK Authoring Tool
We have developed a tool, DESK [13, 14], where authorized
users can customize web page generation procedures by
editing specific HTML pages produced by a dynamic page
generation system. DESK acts as a client-side complement
of a dynamic web page generation system, PEGASUS [5,
12], which generates HTML pages from an ontology-based
domain model and an abstract presentation model. The
PEGASUS presentation model specifies which pieces of
knowledge should be presented and how when a certain unit
of information from the domain model is output to the user.
Instead of using the PEGASUS modeling language,
authorized users can modify the internal presentation model
by editing in DESK the HTML pages generated by
PEGASUS.

DESK uses the PEGASUS domain model to a) identify
pieces of domain contents in the edited page, b) establish rel-
ations between them, c) select one (or more) of the involved
knowledge items as the root domain object behind the web
page, from which all other objects are referred to as relative
to this one, d) detect iteration patterns when the user lays out
data over structured displays (e.g. records in a table).

Figure 2. Detecting correspondences between page blocks

and domain objects with DESK

For instance, consider a web page like the one shown on the
upper-right corner of Figure 2, where information about
Vincent van Gogh is presented. Assuming an ontology has
been defined in PEGASUS for a virtual museum or a course
on history of art, including classes like Painter, Painting,
School, and so on, DESK is able to find that this page is
displaying attributes (name, birth, short biography) and
relations (works, school) of an instance of Painter. If the user
adds text, changes the style or the position of a piece of the
document (e.g. the thumbnail image on the lower-right
corner of the web page in Figure 2), DESK finds a
description of this piece that relates it to the main object (van
Gogh) in terms of the vocabulary defined by the application
domain ontology (e.g. “the small-image attribute of the last
element in the selected-works relation of the object with ID

Silvia Berti
57

vangogh”). This information is used by DESK to modify the
presentation model for class Painter (or class Painting if
appropriate), so that the change is permanent for all objects
of class Painter. The van Gogh instance acts as an example
for the user to see and change how a painter presentation (by
PEGASUS) looks like, and DESK generalizes the
modification to the whole instance class.

Reverse Engineering
PEGASUS generates web pages on the fly from a semantic
network of ontology instances (the application
data/knowledge) as the user implicitly requests viewing
domain objects. These requests are internally generated from
the navigational interaction of the user with an application
supported by PEGASUS. To present an object, PEGASUS
finds its class and applies the presentation model associated
to the class to generate a web page where selected pieces of
the object are displayed. DESK follows the inverse path: it
parses the web page and locates the source of page fragments
in the domain model, as well as the part of the presentation
model that defines how the fragment was presented.

This backward transition from syntactic blocks to semantic
blocks can be seen as a reverse engineering problem, and as
such is a non-trivial task. Our current approach is based on a
simple search of text and multimedia fragments in the
domain knowledge base. Devising a smarter search is an
open issue in our work. Other main difficulties are cutting
out the right syntactic blocks in the page to be found in the
KB, and removing the ambiguity when the search yields
multiple results. To solve the latter, DESK uses heuristics
such as requiring that found contents are connected to each
other in the domain model, and priorizing the closeness of
knowledge units in the semantic network. We carry out the
former by looking for hints in user actions (e.g. selection of
blocks), domain contents (e.g. readjust block boundaries
when the search yields a partial match), and the syntactic
structure of the display (e.g. paragraphs, table cells, etc.).

DESK uses an implicit display model based on different
kinds of pre-programmed presentation widgets such as
tables, selection lists, combo boxes, trees and so forth, as
supported by HTML. Because the most flexible construct for
structured layout in HTML are tables, an important part of
our work in DESK is concerned with specific strategies for
treating complex mappings from application data structures
to nested tables. The considerable number of research works
related to table analysis and interpretation that can be found
in the literature [6, 7, 10] proves that table parsing is a
difficult problem and an interesting object of study by itself.
We believe that the introduction of models of domain
knowledge in this frame brings about interesting views on
the problem, that are particularly pertinent in the context of
web applications and HTML as a standard for web user
interface presentation. In particular, while other systems
infer data structures from tables in HTML documents, in
DESK the data structure description is taken from a
dynamically built structured model of user’s actions related
to domain information.

DISCUSSION
Building dynamic information visualization interfaces from
examples requires elaborate data characterizations when the
underlying domain knowledge has a complex structure, as is
the case in many knowledge-based web applications and
information systems. The usage of ontologies, i.e. explicit
descriptions, to organize and share knowledge in such
systems is becoming an increasingly popular approach. We
propose to exploit these explicit models of domain
knowledge, which are available for free (from the PBE
system developer point of view), to improve the reach and
precision of PBE techniques, and in particular as a highly
valuable source of information for data characterization.

The use of a data model was already present in one of the
earliest PBE systems, Peridot [16], in a very simple form.
Peridot lets the user create a list of sample data to construct
lists of user interface widgets. In Gold [17] and Sagebrush
[20] the user can build custom charts and graphics by
relating visual elements and properties to sets of data
records. The data model in Peridot consists of lists of
primitive data types. Gold and Sagebrush assume a relational
data model. Our view in this regard is that it is interesting to
lift these restrictions and support richer information struc-
tures, as proposed in our current and earlier research work.

One interesting issue when domain or data models are used
in a PBE system is whether and to what extent the model
should be visible for the user. There is a whole range
between completely hiding the domain model and showing a
full literal (abstract) view of it. Moving along this axis means
trading simplicity for expressive power. For instance,
HandsOn does show data, but in the form of specific
examples, easier to have in mind and manipulate than an
abstract model. The explicit manipulation of data in
HandsOn has an additional advantage: keeping track of the
relation from visual objects to data is not a problem, as all
these links are defined by the user in the system, so that
HandsOn can store and remember them. In DESK the data-
presentation relation is known by the page generation
system, PEGASUS, but this information is lost when DESK
gets the generated page, and has to be recovered by the PBE
system in a difficult and costly reverse engineering process.

DESK uses a more expressive model of application
knowledge that HandsOn, but completely hides it from the
user to stay within the strict WYSIWYG principle, thus
requiring zero awareness from the user of the internal
knowledge representation. In exchange, DESK has important
expressive limitations: it is not possible to modify the way
visual components are linked to domain objects, and it is not
possible to add new object part presentations that are not
already present in a page. This means, in particular, that it is
not possible to build a presentation from scratch, and the
user can only customize existing designs. We have followed
this approach as an experiment to investigate how far one
can go without giving up on the WYSIWYG requisite, but
there is nothing that impedes augmenting DESK with views
of the domain model to provide the expressive capabilities

Silvia Berti
58

needed to remove these limitations, except a compromise in
simplicity of use.

Other sources of information for PBE inferencing used by
DESK, besides models of application domain knowledge,
include spatial properties and relations in the edited display,
knowledge about page design practice (page layout, table
layout, standard spatial patterns), know-how about
interactive design manipulation, and structure in user’s
actions and behavior (e.g. order and sequencing, iterative
patterns). For the underlying representation of the visual
constructs being created or modified by example, DESK
does not use such a sophisticated model as HandsOn does
because a) the editing functionalities and gestures needed to
manipulate data examples and interface components in the
HandsOn environment require a detailed description of the
involved objects and imply frequent readjustments in data
flow relations, whereas DESK provides more limited
capabilities based on HTML editing, and b) the run-time
implementation platform for target constructs in HandsOn is
a full-fledged window-based toolkit (Amulet), while in
DESK the (PEGASUS) interface model essentially builds
upon the much simpler HTML user interface model.

ACKNOWLEDGMENTS
The work reported in this paper is being supported by the
Spanish Ministry of Science and Technology (MCyT),
project number TIC2002-1948.

REFERENCES
1. Berners-Lee, T., J. Hendler, O Lassila. The Semantic

Web. Scientific American, May 2001.

2. Castells, P., Szekely, P., Salcher, E. Declarative Models
of Presentation. Proceedings of the International
Conference on Intelligent User Interfaces (IUI’97).
January 6-9, 1997, Orlando, Florida, USA, pp. 137-144.

3. Castells, P., Szekely, P. Presentation Models by
Example. In: Duke, D.J., Puerta A. (eds.): Design,
Specification and Verification of Interactive Systems ’99.
Springer-Verlag, 1999, pp. 100-116.

4. Castells, P., Szekely, P. HandsOn: Dynamic Interface
Presentation by Example. Proceedings of the HCI
International’99. Munich, 1999, pp. 188-1292.

5. Castells, P., Macías, J.A. An Adaptive Hypermedia
Presentation Modeling System for Custom Knowledge
Representations. Proceedings of WebNet’01 - World
Conference on the WWW and Internet. Orlando, Florida;
October 23-27, 2001. Published by AACE, pp. 148-153.

6. Chen, H.; Tsai, S.; Tsai, J. Mining tables from large sale
HTML texts. 18th International Conf. on Computational
Linguistics (COLING), 2000, pp. 166-172.

7. Cohen, W., Hurst, M., Jensen, L. A flexible Learning
System for Wrapping Tables and Lists in HTML
Documents. In Proceedings of the WWW Conference.
Honolulu, Hawaii, USA. May 7-11, 2002, pp. 232-241.

8. Cypher A. (ed.). Watch What I Do: Programming by
Demonstration. The MIT Press, 1993.

9. Gruber, T. R. A Translation Approach to Portable
Ontology Specifications. Knowledge Acquisition, 5(2),
pp. 199-220, 1993.

10. Hurst, M. F. The Interpretation of Tables in Texts. PhD.
Thesis. University of Edinburgh, 2000.

11. Little, S., J. Geurts, and J. Hunter. Dynamic Generation
of Intelligent Multimedia Presentations through Semantic
Inferencing. 6th European Conference on Research and
Advanced Technology for Digital Libraries (pages 158-
189). Springer, 2002.

12. Macías, J.A., Castells, P. A Generic Presentation
Modeling System for Adaptive Web-based Instructional
Applications. ACM Conf. on Human Factors in
Computing Systems (CHI’2001). Seattle, April 2001.

13. Macías, J.A., Castells, P. Dynamic Web Page Author-ing
by Example Using Ontology-Based Domain Know-ledge.
International Conference on Intelligent User Interfaces
(IUI’2003). Miami, Florida. January 2003, pp. 133-140.

14. Macías, J.A., Castells, P. DESK-H: building meaningful
histories in an editor of dynamic web pages. To appear in
11th International Conference on Human-Computer
Interaction (HCII’2003). Creta, Grece, June 23-27, 2003.

15. Miller, R., Myers B. Creating Dynamic World Wide Web
Pages By Demonstration. Carnegie Mellon University
School of Computer Science, CMU-CS-97-131 and
CMU-HCII-97-101, 1997.

16. Myers, B. A. Creating User Interfaces by Demonstration.
Academic Press, San Diego, 1988.

17. Myers, B. A., J. Goldstein, M. Goldberg. Creating Charts
by Demonstration. Proceedings of the CHI'94
Conference. ACM Press, Boston, April 1994.

18. Myers, B. A., et al. The Amulet 2.0 Reference Manual.
Carnegie Mellon University Tech. Report, 1996.

19. Ossenbruggen et al. Towards 2nd and 3rd Gener-ation
Web-Based Multimedia. 10th International World Wide
Web Conference. ACM Press, 2001, pp. 479-488.

20. Roth, S. F. et al. Interactive Graphic Design Using
Automatic Present-ation Knowledge. CHI'94 Con-
ference. Boston, April 1994, pp. 112-117.

21. Spyns, P, R. Meersman, M. Jarrar. Data modelling versus
Ontology engineering. SIGMOD Record 4, Dec. 2002.

22. Wolber, D., Su, Y., Chiang Yih. Designing Dynamic
Web Pages and Persistence in the WYSIWYG Interface.
Proceedings of the International Conference on
Intelligent User Interfaces (IUI’2002). San Francisco,
California, USA. January 13-16 2002, pp. 228-229.

23. Young D. H. Enhydra XMLC Java Presentation
Development. Sams, 2002.

Silvia Berti
59

Short biography

José Antonio Macías Iglesias is a teaching assistant of the Escuela Politécnica Superior of the
Universidad Autónoma de Madrid, where he is finishing his PhD thesis under the supervision of P.
Castells. His PhD thesis is about the use of WYSIWYG authoring tools that use PBE techniques to create
user interfaces for complex knowledge-based systems, with support for dynamic interface features (e.g.
dynamic web pages). His general research interests fall in the areas of Human-Computer interaction,
Computer-Assisted Learning, Ontology Engineering and the Semantic Web.

Pablo Castells is a staff member of the Escuela Politécnica Superior of the Universidad Autónoma de
Madrid since October 1995, where he currently holds an associate professor position. He obtained a M.S.
degree in Mathematics in 1989 and a PhD in Computer Science in 1994 at the Universidad Autónoma of
Madrid. His PhD thesis was on automated theorem proving and knowledge-based problem solving in
Physics and Mathematics. His current research interests include User Interface Development Tools,
Progamming by Example, User Modeling, Ontologies, and Semantic Web technologies.

From April 1994 to September 1995 P. Castells worked under a post-doc fellowship at the Information
Sciences Institute (ISI) of the University of Southern California (USC), where he collaborated with the
Mastermind project, in which he contributed to the development of a model-based presentation support
module for dynamic interface components that automatically adjust to application data, user models and
platform characteristics. Back in Madrid, he worked on a PBE authoring tool for the Mastermind GUI
development system. Since 1999 he has been working on an ontology-based presentation system for
adaptive hypermedia. This research has progressed towards the wider scope addressing knowledge
visualization and navigation on the Semantic Web. Simultaneously, J. A. Macías and P. Castells are
investigating the development of interactive authoring techniques for adaptive hypermedia systems and
ontology-based knowledge visualization systems. They are currently conducting this work in the context
of wider projects in the area of the Semantic Web technologies.

Silvia Berti
60

End User Programming for Web Users

Robert C. Miller
MIT Lab for Computer Science

200 Technology Square, Cambridge, MA 02139 USA
rcm@lcs.mit.edu

http://graphics.lcs.mit.edu/~rcm

Introduction

The World Wide Web is increasingly a focus of business
and entertainment. Applications which formerly would have
been designed for the desktop — calendars, travel reserva-
tion systems, purchasing systems, library card catalogs, map
viewers, even games like crossword puzzles and Tetris —
have made the transition to the Web, largely successfully.

Applications have moved to the Web for a number of rea-
sons. First, and probably most important, web applications
need no installation. Just click on a link, and you can use
the application immediately. Bugs can be fixed and new fea-
tures can be rolled out without requiring users to install up-
grades or apply patches. Multiple platforms are also easier to
support. Platform-independent standards, such as XHTML,
DOM, ECMAScript (aka JavaScript), and CSS, make it pos-
sible to target a web application to any standards-compliant
web browser, regardless of operating system or windowing
environment.

The migration of applications to the Web opens up a new
vista of opportunity for end user programming. Applica-
tions that would have been closed and uncustomizable on the
desktop suddenly sprout numerous hooks for customization
when implemented in a web browser. Structured displays are
represented by machine-readable HTML. Commands are in-
voked by generic HTTP requests. Graphical layouts can be
tailored by stylesheet rules.

Unfortunately, although web browsers have a long history
of built-in scripting languages, these languages are not de-
signed for the end user of a web application. Instead, lan-
guages like JavaScript and Curl [8] are aimed at designers of
web applications. Granted, many web designers lack a tradi-
tional programming background, so they may be considered
end users in that respect. But the needs of a designer, build-
ing an application from whole cloth, differ greatly from the
needs of a user looking to tailor or script an existing appli-
cation. Current web scripting languages do not serve those
needs.

In this paper, I consider the problem of end-user automation
of web applications. After covering background and related
work, I will present several motivating examples, and distill
from those examples some essential requirements on a pro-
gramming system for web users. Preliminary steps toward
such a system have been taken, and the resulting research
prototype (LAPIS) will be briefly described. Finally, I will
mention some of the hard problems that arise.

Background

Closed, uncustomizable applications have long been a buga-
boo for end-user scripting on the desktop. Despite the long
existence of scripting frameworks like AppleScript, OLE
Automation, and Visual Basic for Applications, and exhor-
tations by platform vendors to support them, many desktop
applications still do not provide the hooks required for script-
ing. In a software development environment that demands
tight development cycles and short times to market, scripting
and customization get short shrift compared to more press-
ing concerns like feature set, performance, reliability, and
usability.

When a desktop application fails to provide an application
programming interface (API), the end user must resort to
automating the user interface — a technique often called,
somewhat derogatively, screen scraping. Cross-application
macro recorders support this technique by recording the
user’s mouse movements and keystrokes, then playing them
back by inserting simulated mouse and keyboard events in
the system queue. Macro recorders have a serious flaw in
that they can only simulate input; they have no way to read
an application’s display to extract information or condition
their behavior on the application’s state. Triggers [14] and
VisMap [15] address this problem by interpreting the screen
contents at a pixel level, but this approach is challenging to
program and has so far been applied only to simple tasks.

Interpreting desktop application output is hard. Web applica-
tions, however, display their output in structured, machine-
readable HTML, making screen scraping much easier. As a

1

Silvia Berti
61

Silvia
Rectangle

result, web screen scraping abounds. Comparison-shopping
sites, such as Priceline.com, use screen scraping behind the
scenes to extract price information from online retailers. A
Boston Red Sox fan used screen scraping to try to stuff the
ballot box for baseball’s 1999 All-Star Game ballot [2].

The component of a web screen scraper that interprets a web
page and extracts information from it is called a wrapper.
Many wrappers are written by hand in scripting languages
like Perl or Python, but work has also been done on inducing
wrappers from examples [7].

Most web screen scrapers are written in a scripting language
that dwells outside the web browser, like Perl, Python, or
WebL [4]. For an end-user, the distinction is significant.
Cookies, authentication, session identifiers, plugins, user
agents, client-side scripting, and proxies can all conspire to
make the Web look different outside the web browser than
inside. But perhaps the most telling difference, and the most
intimidating one for an end user, is the simple fact that out-
side a web browser, a web page is just raw HTML. Even
the most familiar web portal looks frighteningly complicated
when viewed as HTML source.

Unfortunately, only a handful of systems have looked at
putting end-user web automation into the browser, where it
belongs. LiveAgent [5] is a macro recorder that can record
and play back a sequence of browsing actions, using a local
HTTP proxy to snoop on the user’s actions. SPHINX [10] is
a user-configurable web crawler that runs as a Java applet in
the user’s web browser, so that it would see the same pages
seen by the user. TrIAS [1] constructs wrappers from exam-
ples given in a web browser.

Although JavaScript is primarily intended for site design-
ers, end users can access it with bookmarklets [3]. A book-
marklet is a short piece of JavaScript code encoded as a URL
and stored in a bookmark. When the user clicks on the book-
mark, the JavaScript code runs on the current page. For ex-
ample, here is a simple bookmarklet that changes the current
page’s background to white:

javascript:void(document.bgColor=’white’)

Bookmarklets can extract data from pages, change display
properties, adjust window properties, and visit other sites.
However, a bookmarklet must fit into a URL, strongly con-
straining its length and making it hard to read and modify.

Mozilla has brought some promising developments in
browser-centric web automation [13]. All the “chrome” in
Mozilla — the toolbars, panels, and dialog boxes that sur-
round the browser itself — are specified in XUL, an XML-
based user interface description language. A combination
of XUL, JavaScript, and CSS is used to implement web
screen scrapers directly in the browser. For example, when
a Google search results page is displayed in the browser,
Mozilla automatically parses it to present the results as a list

of hyperlinks in the sidebar. Mozilla promises to be a power-
ful testbed for future research into end-user web automation.

Scenarios

For further motivation, let us consider some scenarios in
which end-users of web applications would want scripting
and customization. These scenarios offer concrete examples
that guide the requirements to be discussed in the next sec-
tion.

Scenario 1: Reviewing. Many conferences — including
CHI — now use a web application to receive papers, dis-
tribute them to peer reviewers, and collect the reviews. A
reviewer assigned 10 papers to read and review faces a lot
of repetitive web browsing to download each paper, print it,
and (later) upload a review for it. Some reviewing applica-
tions require the review to be submitted in a web form, so a
review prepared off-line must be copied and pasted into the
appropriate fields of the form. Tedious repetition is a strong
argument for automation. Unfortunately, since the review-
ing application is protected by authentication, a simple Perl
script won’t do the job.

Scenario 2: House hunting. Prospective home buyers in the
US can use the Multiple Listings Service (MLS) to search
for homes matching various criteria. A number of real es-
tate companies now offer web interfaces that search the MLS
(e.g., www.realtor.com). Interestingly, different MLS search
interfaces provide different subsets of the available informa-
tion, forcing a home buyer to search several sites to get a
more complete picture. Furthermore, many location pref-
erences that may be personally important to a home buyer
cannot be specified in the search. If I buy this house, how
far will I have to commute to my work? How far is the near-
est grocery store, subway stop, or public park? How far is it
from my mother’s house? These questions can be answered
by plugging the house address into an online map site (e.g.,
MapQuest).

Scenario 3: Book shopping. A voracious reader may fre-
quently visit an online bookstore (e.g., Amazon.com) with a
list of books to buy. A voracious reader on a budget, how-
ever, may want to check first whether any of the books are
available in a local public or university library by searching
its online catalog. This is a feature that Amazon is unlikely
ever to offer.

Requirements

The scenarios above suggest a number of desirable criteria
for an end-user web automation system.

2

Silvia Berti
62

Silvia
Rectangle

Browser centricity. In these scenarios, the web browser is
the center of the user’s activity. Tasks interleave manual op-
erations, such as logging in to a site, with automatable opera-
tions, such as downloading papers or searching for books. If
the automation takes the user out of the browser, or digs be-
low the familiar rendered world of the Web into raw HTML,
the user’s work flow is interrupted.

Data-parallel operations. Much of the repetitive activity in
these scenarios revolves around sets of data items: papers
to print, reviews to upload, houses to search, addresses to
map, books to look up. The ability to apply an operation to
multiple items at once would be extremely valuable in web
browsing, just as it is in file managers, word processors, and
drawing editors.

Cross-site scripting. The scenarios often require interacting
with multiple web applications in the same task: e.g., multi-
ple real estate sites, or a real estate site and a mapping site, or
a bookstore and a library catalog. Instead of being confined
to the environment of a single page, as JavaScript typically
is, end-user automation must smoothly interact with multiple
pages, extracting data from one page and using it in another.

Both manual and automatic invocation. Suppose the user
creates a distance-to-work script that takes a house address
as input and uses an online mapping site to compute how far
the user would have to commute to work from that address.
This script might be invoked in several ways. With manual
invocation, the user selects a house (or list of houses) and
triggers the script from a menu or toolbar. Bookmarklets
support only manual invocation. With automatic invocation,
on the other hand, the browser automatically runs the script
on any page recognized as a list of houses. The resulting
distances might be inserted in the house’s description, or they
might be used to filter the list of houses, hiding any that are
farther than a given threshold. Mozilla’s search sidebar uses
automatic invocation; whenever it detects a Google search
results page, it automatically parses the page and displays the
results in the sidebar. Automatic invocation allows custom
behavior to be injected into a web application in ways that
were impossible with desktop applications.

Approach

The LAPIS research project at MIT is working toward this
vision of end-user automation in the web browser. Our
current prototype, LAPIS, is written entirely in Java. The
LAPIS browser can display simple HTML, visit hyperlinks,
and submit web forms, but it fails to support all the stan-
dards (such as cookies, JavaScript, CSS, and SSL) required
by modern web applications. Work is underway to port some
of the novel features of LAPIS into Mozilla, giving a much
richer, standards-compliant testbed for web automation.

LAPIS is described in detail elsewhere [9]. Features that are
most relevant to end user automation are highlighted below:

Pattern library. LAPIS includes an extensible library of
patterns and parsers that can be referred to by simple names,
such as Link, Paragraph, Button, or Table. An HTML parser
is included in the library, naturally, but so are patterns for
other common kinds of text structure, including dates, times,
phone numbers, email addresses, URLs, etc. Wrappers for
web sites, such as Google or Amazon, would naturally fall
into the pattern library. A pattern library raises the abstrac-
tion level of data descriptions, so that when users think about
identifying elements and extracting data from a web page,
they can think in terms of books or addresses rather than
low-level features of HTML. The LAPIS library is designed
to be extended, and is language-independent in the sense that
a library pattern can be implemented by an arbitrary kind of
scanner — regular expression, context-free grammar, parser
generator, neural network, or even a Turing-complete pro-
gram.

Pattern language. Library patterns can be glued together
with a pattern language called text constraints, which uses
relational operators such as before, after, in, and contains to
describe a set of regions in a page. The matches to a pattern
are displayed as multiple selections, and editing commands
can affect all selections at once [12]. LAPIS was designed
with data-parallel operations in mind.

Command language. LAPIS has an embedded scripting
language aimed at the end user, not the page designer. (Tcl
was chosen as the scripting language, partly because of its
syntactic simplicity and partly because a good pure-Java im-
plementation was available. Tcl is also well-suited for in-
teractive command execution.) Commands take patterns as
arguments to indicate how to manipulate a web page. For
example, the keep command extracts a set of regions match-
ing a pattern; delete deletes the regions; sort sorts the re-
gions in-place; and replace replaces each region with some
replacement text, which may be a function of the original re-
gion. Other commands interact with the web page as a user
would: click simulates a click on a hyperlink or form con-
trol matching a pattern, and enter places text in a form field.
JavaScript can also access form controls, of course, but an
important difference is that LAPIS patterns can be written
without looking at the underlying HTML source, e.g.:

click {Link containing “Download this paper”}

click {Checkbox just after “Garage”}

Writing equivalent commands in JavaScript requires digging
into the HTML source to find the names of the fields.

Browser shell. Instead of presenting the Tcl interpreter in
a separate window, LAPIS integrates the interpreter directly
into the browser window. Tcl commands may be typed into
the Location box. The typed command is applied to the

3

Silvia Berti
63

Silvia
Rectangle

current page, and the command’s output is displayed in the
browser as a new page that is added to the browsing history.
A command may also invoke an external program, passing
the current page as standard input and displaying the pro-
gram’s standard output and error streams as a new page. This
“browser shell” interface [11] allows legacy programs and
scripts written in other languages to be integrated seamlessly
into the browser environment.

Challenges

The primary challenge for end-user automation in the web
browser can be simply stated: the user should never have to
view the HTML source of a web site to customize or auto-
mate it. Web sites are becoming increasingly complicated.
Even when a web interaction could be scripted outside the
browser (with no trouble from cookies, authentication, or
dynamically-generated content), the need to examine and un-
derstand the HTML source is a roadblock that discourages
spur-of-the-moment innovation. Web automation must be
done at the level of rendered pages.

This problem is far from trivial. What the user sees as “blue
text” in a rendered page may be blue for many reasons: be-
cause it is a hyperlink; because it is contained in a FONT tag;
because it has a CSS style attribute; because it matched by
a CSS stylesheet rule; or because its color attribute was set
by some JavaScript code. Worst of all, the “blue text” may
be only a picture of text, embedded in a GIF or JPG image!
The text pattern matching approaches used for web screen
scraping outside the browser no longer work in general.

An automation system must deal smoothly with the prolif-
eration of Web standards and syntaxes — XHTML, XML,
CSS, MathML, SVG — while hiding the distinctions be-
tween them from the user. It must be integrated with a
fully standards-compliant web browser, so that the user’s
web applications are functional and usable. Where previous
approaches used a web proxy to extend the browser (e.g.,
LiveAgent), embedding automation into the browser is more
likely to achieve the desired results.

Another challenge facing end-user web automation, like all
web screen scrapers, is dealing with changes in web appli-
cations. One of the benefits of web applications (for their
designers) is that changes can be rolled out without notice to
users, but this turns out to be detrimental to end-user automa-
tion. Some steps toward solving this problem include regres-
sion tests that can detect when a wrapper is going wrong [6]
and intelligent agents that relearn failed wrappers with the
user’s help [1]. Web services with well-specified XML APIs
will also help, although considering how few desktop appli-
cations have scriptable APIs, it is hard to be optimistic about
web applications.

Acknowledgements

This research was sponsored in part by the National Science Foundation,
the Army Research Office, the Defense Advanced Research Project Agency,
and the USENIX Association. The views and conclusions contained herein
are those of the author and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed or implied, of
any sponsoring party or the U.S. Government.

References
[1] Mathias Bauer, Dietmar Dengler, Gabriele Paul, and Markus Meyer.

Programming by demonstration for information agents. Communica-
tions of the ACM, 43(3):98–103, March 2000.

[2] Gordon Edes. This hack tried but couldn’t connect. Boston Globe,
July 1999.

[3] Steve Kangas. Bookmarklets. http://www.bookmarklets.com/, 1998.

[4] Thomas Kistler and Hannes Marais. WebL – a programming language
for the Web. In Proceedings of the 7th International World Wide Web
Conference (WWW7), 1998.

[5] Bruce Krulwich. Automating the internet: Agents as user surrogates.
IEEE Internet Computing, 1(4):34–38, 1997.

[6] Nicholas Kushmerick. Wrapper verification. World Wide Web,
3(2):79–94, 2000.

[7] Nicholas Kushmerick, Daniel S. Weld, and Robert Doorenbos. Wrap-
per induction for information extraction. In Proceedings of Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), pages 729–
737, 1997.

[8] Friedger Müffke. The Curl programming environment. Dr. Dobb’s
Journal, September 2001.

[9] Robert C. Miller. Lightweight Structure in Text. PhD thesis, Carnegie
Mellon University, May 2002.

[10] Robert C. Miller and Krishna Bharat. SPHINX: a framework for cre-
ating personal, site-specific web crawlers. Computer Networks and
ISDN Systems, 30(1–7):119–130, 1998.

[11] Robert C. Miller and Brad A. Myers. Integrating a command shell
into a web browser. In USENIX 2000 Annual Technical Conference,
pages 171–182, June 2000.

[12] Robert C. Miller and Brad A. Myers. Multiple selections in smart
text editing. In Proceedings of the Sixth International Conference on
Intelligent User Interfaces (IUI 2002), pages 103–110, 2002.

[13] Ian Oeschger, Eric Murphy, Brian King, Pete Collins, and David
Boswell. Creating Applications with Mozilla. O’Reilly, 2002.

[14] Richard Potter. Triggers: Guiding automation with pixels to achieve
data access. In Allen Cypher, editor, Watch What I Do: Programming
by Demonstration, pages 360–380. MIT Press, 1993.

[15] Luke Zettlemoyer and Robert St. Amant. A visual medium for pro-
grammatic control of interactive applications. In Proceedings of ACM
Conference on Human Factors in Computer Systems (CHI ’99), pages
199–206, 1999.

4

Silvia Berti
64

Silvia
Rectangle

Studying Development and Debugging
To Help Create a Better Programming Environment:

For the: CHI 2003 Workshop on Perspectives in End User Development

Brad Myers
Human Computer Interaction Institute

School of Computer Science
Carnegie Mellon University

5000 Forbes Ave.
Pittsburgh, PA 15213 USA

+1 412 268 5150
bam+@cs.cmu.edu

http://www.cs.cmu.edu/~bam

Andrew Ko
Human Computer Interaction Institute

School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213 USA

+1 412 412 0042
ajko@cmu.edu

http://www.andrew.cmu.edu/~ajko

INTRODUCTION
The event-based style is increasingly common in modern
end-user programming languages. Visual Basic,
Macromedia’s Director, web scripting languages, as well
as many recent novice-geared research prototypes such as
Alice [9] and HANDS [8], provide event-based constructs
and user interfaces, enabling programmers to create highly
interactive environments. Yet very few of the user studies
of programming environments and language usability
investigate the event-based style. Since recent studies
suggest that language paradigm is a predictor of program
comprehension and programming strategies [2] [6], event-
based programming environments and their user interfaces
should be tailored to the event-based style.

As part of the Natural Programming Project
(http://www.cs.cmu.edu/~NatProg/) we have begun to
investigate how end users create, test, and debug event-
based programs in an effort to guide the design of novel
programming environment tools for end-user event-based
languages. While our research has thus-far focused on
Alice (see Figure 1), a system for novice programmers,
we believe that the techniques we are proposing will be
useful to novice and expert programmers using more
general languages with event support such as Visual
Basic, Java and C#.

STUDIES
We recently conducted a study of expert Alice users in
order to get a glimpse at the general areas of difficulty

Figure 1. This is a typical view of Alice, with code and events at the lower and upper right, the worldview
at the top center, the object list at the top left and the selected object’s properties at the bottom left.

Silvia Berti
65

Studying Development a nd Debugging CHI”03: Workshop #5 - 2

with using event-based languages and environments. The
study used the method of contextual inquiry (CI) [1] in
order (1) to identify problems that programmers encounter
when creating highly interactive, event-based programs,
and (2) to evaluate the utility of using CIs to extract
design requirements for programming environments.

Participating programmers were enrolled in the “Building
Virtual Worlds” course offered at Carnegie Mellon
University. The course required collaborations among
programmers, modelers, sound engineers, and painters to
create a new interactive 3D world every two weeks using
Alice. Alice provides a limited object model, global event
handlers, and a structured editor that prevents all syntax
errors.

Four programmers were recruited and observed during the
second half of the semester, after the programmers were
experienced with Alice. All had extensive experience with
more than one programming language. As programmers
worked on their programs, the experimenter recorded
observations on paper and video. The experimenter
formed hypotheses about the programmer’s actions in situ
and asked the programmers if the hypotheses were correct.
For example, the experimenter would say, “It looks like
you’re trying to align these two objects.” and the
programmer would reply, “Basically. I want them to be
aligned on this axis, but I don’t care about the other two.”
Participants were paid $10 per hour for their participation.

Approximately 12 hours of observations were obtained
from the four programmers over 12 sessions. Each of the
sessions was reviewed for breakdown scenarios, in which
a programmer’s strategy was difficult to perform or
unsuccessful. Breakdowns scenarios were consolidated
into the problem types described below.

Programming Problems
In many breakdowns, code was reused to perform similar
operations, such as animations or calculations, but the
code was not properly adapted for its new location. These
bugs were particularly difficult to isolate because they
propagated through complex animations, which depended
on events. These breakdowns highlight the need for more
support for code reuse. We are designing a smart copy
and paste mechanism that could automatically coerce
parameters from method to method.

In other scenarios, programmers needed to create finely
tuned sequences of animations and events by tweaking
existing code. However, programmers often reverted to a
previous version of code manually, to avoid undoing
intermediary changes to unrelated code. One way to
alleviate this difficulty would be to keep an extensive
code history, which could support a multi-level intelligent
undo and checkpointing.

Testing Problems
The programmers used visual cues extensively in order to
aid testing tasks. For example, one programmer assigned
the color of an object to the triggering of an event handler
in order to verify the event occurred at the proper time.

This suggests a need for a way of saying “watch this
variable by mapping it’s value to this” where this could
be a visual cue such as an object’s color, size, or
visibility.

A difficulty in testing code in isolation was the most
prevalent breakdown. As one example, programmers were
forced to wait for long animation sequences to complete
in order to test the end of the sequence. To tweak an
animation, programmers made a small modification,
wrote an event to run the animation when a key was
pressed during runtime, ran the program, viewed the
animation, and repeated. Also, to test a program’s
response to an event in a specific world state, the
programmer had to manually recreate the world state, and
cause the event to occur. One possible solution to these
problems would be a timeline visualization of events and
methods in the world with the ability to click and zoom
on objects, events, and time periods. Programmers could
then recreate problems and directly associate a world state
with specific code.

Debugging Problems
Debugging breakdowns occurred when programmers had
difficulty answering debugging questions of the form
“when,” “why,” and “why not.” Questions such as “when
was the last time this object moved?” were difficult to
answer; and the timeline visualization discussed earlier
could provide immediate access to this information.
Answering other questions of the form “why” and “why
not,” were highly involved debugging tasks. The system
could use simple heuristics to answer these. For example,
in reply to “why did this object move?” the system could
show the code that last moved the object.

FUTURE STUDIES
Future work will involve further analyses of the data
obtained in these CI, as well as CIs with novice and
expert programmers new to Alice. Though many of the
breakdowns identified in our current study were not
specific to event-based languages, we expect to find many
new difficulties in our future studies.

FUTURE PROGRAMMING ENVIRONMENT
Using these observations as user interface design
guidelines, as well as features described in previous work
[4] [3] [10], we propose to create a set of new features and
tools, and add these to the Alice environment. The
features we currently envision include the following.

To help with the construction of code, we envision the
system including:

• Demonstrational techniques [5], so that programmers
can show the system the desired dynamic behavior
using example objects, and have the appropriate code
generated and inserted into the program.
Demonstrational techniques will also help to automate
repetitive tasks, such as creating a large number of
objects that have similar properties.

Silvia Berti
66

Silvia Berti

Studying Development a nd Debugging CHI”03: Workshop #5 - 3

• Checkpointing and multi-level selective undo, so that
programmers can more easily try out different
approaches and can back up or selectively undo some
edits if they discover that the new code does not fix the
problem at hand.

• Smart cut-and-paste to help with code re-use, so that
when the programmer copies code, the system will
detect differences between the old and new locations,
and help the programmer edit the code appropriately
based on the new context.

• Agents to help with errors, that will look for common
error situations, as well as provide better support when
there are run-time errors, by suggesting possible
corrections.

• Special-purpose editors. Some parts of the code might
be easier to write if the student could use a different
format from the conventional code. For example, our
prior research showed that a form-based presentation
helped users construct more correct Boolean
expressions [7] compared with conventional AND-OR-
NOT expressions. We will also explore providing
equation editors to help programmers convert math and
science formulas into code.

To help with the understanding, testing, and
debugging of code, we envision the system including:

• Full visibility of data, so programmers can see what is
happening at run time. This will include simple ways
to map values to properties of visible objects. For
example, the user might want to temporarily use an
object’s color to visualize whether two objects are
considered to be touching.

• The ability to pause on any program event, which
includes conventional breakpoints, but also the ability
to pause when there is user input, when an object or
variable changes value, when an object of a particular
type is created or deleted, etc.

• Changing values at run-time to see what would
happen, with the ability to have these changes reflected
into code.

• Backing up a step and running the program
backwards, to find what happened before the current
point.

• A timeline visualization to show important events
during the running of the program. Collisions, input
events, method invocations, parallel process activities,
and many other events can be shown on the time-line.
Users will be able to scroll the time line backward and
forward in time, which will show the state of the
code’s variables and the 3D world at any point of the
execution. It will also support zooming on events
related to particular objects, code, and periods of time.

• Checkpointing of run-time state so users can repeatedly
execute code that happens after a certain point. Often,
users will need to debug behaviors that occur in the
middle or end of a long execution run. Checkpoints
will provide an easy way to jump directly to the point
in the execution that needs to be tested.

• Support for “why” questions, so the programmer can
determine a sequence of events that led to a variable or
object having its current value, or why an event handler
was called.

• Support for “why not” questions, which will use
heuristics to propose reasons why some event did not
happen. For example, if the programmer asks why an
object is not visible, there are only a limited number of
possible causes, which the system can test
automatically (e.g., its position is outside of the
window, it has zero size, it is behind the camera, it is
occluded by another object, it is white on a white
background, etc.).

• Search capabilities, such as searching for any variable
with a particular value, or any object with certain
properties.

The effectiveness of these tools will be tested empirically.
The expected results from this work are new techniques
and user interfaces applicable to all event-based
programming environments.

SUMMARY
As the workshop call stated, “wide-spread penetration of
interactive software systems has raised an increasing need
for better environments for building applications.” Since
end users in particular are creating interactive applications
using event-based languages, we need to better understand
how to support event-based programming, testing, and
debugging. Our current observational studies aim to help
this understanding, in an effort to design novel
environmental tools to support these tasks.

Both Brad Myers and Andrew Ko would like to
participate in this workshop. Dr. Myers has been leading
the Natural Programming Project and can provide a
perspective on many years of work in the area. Andrew
Ko is just starting to work on studying programmers, and
has performed the studies of Alice described here. We
look forward to participating in this workshop in order to
discuss alternative methodologies for studying
programming environments, novel event-based languages,
as well as psychological studies of end users that may
guide our research.

SHORT BIBLIOGRAPHY OF AUTHORS
Brad A. Myers is a Senior Research Scientist in the
Human-Computer Interaction Institute in the School of
Computer Science at Carnegie Mellon University, where
he is the principal investigator for various research
projects including: Natural Programming, Silver Multi-
Media Authoring, the Pebbles Hand-Held Computer
Project, User Interface Software, and Demonstrational

Silvia Berti
67

Silvia Berti

Studying Development a nd Debugging CHI”03: Workshop #5 - 4

Interfaces. He is the author or editor of over 230
publications, including the books “Creating User
Interfaces by Demonstration” and “Languages for
Developing User Interfaces,” and he is on the editorial
board of five journals. He has been a consultant on user
interface design and implementation to about 40
companies, and regularly teaches courses on user interface
software. Myers received a PhD in computer science at the
University of Toronto where he developed the Peridot
UIMS. He received the MS and BSc degrees from the
Massachusetts Institute of Technology during which time
he was a research intern at Xerox PARC. From 1980 until
1983, he worked at PERQ Systems Corporation. His
research interests include user interface development
systems, user interfaces, hand-held computers,
programming by example, programming languages for
kids, visual programming, interaction techniques,
window management, and programming environments.
He belongs to SIGCHI, ACM, IEEE Computer Society,
IEEE, and Computer Professionals for Social
Responsibility.

Andrew Ko is a first year PhD student in the Human-
Computer Interaction Institute at Carnegie Mellon
University. As an undergraduate at Oregon State
University, he worked with Margaret Burnett on the
Forms/3 end-user visual spreadsheet environment,
studying the use of cognitive walkthroughs for
experiment design and conducting usability studies of
novel interfaces for spreadsheet testing. For his
undergraduate thesis, he investigated end-user and expert
programmer problem solving strategies in a
programmable statistics environment. Currently, he is
emphasizing usability and design first by extracting
design requirements for event-based programming
environments by conducting contextual inquires with
expert, intermediate and novice programmers.

REFERENCES
1. Beyer, H. and Holtzblatt, K., Contextual Design:

Defining Custom-Centered Systems. 1998, San
Francisco, CA: Morgan Kaufmann Publishers, Inc.

2. Corritore, C.L. and Wiedenbeck, S., “An Exploratory
Study of Program Comprehension Strategies of
Procedural and Object-Oriented Programmers.”
International Journal of Human-Computer Studies,
2001. (54): pp. 1-23.

3. Fry, C., “Programming on an Already Full Brain.”
Communications of the ACM, 1997. 40(4): pp. 55-
64.

4. Lieberman, H., “The Debugging Scandal and What to
Do About It.” Communications of the ACM, 1997.
40(4): pp. 26-78.

5. Myers, B.A. “Demonstrational Interfaces: A Step
Beyond Direct Manipulation,” in Watch What I Do:
Programming by Demonstration. 1993. Cambridge,
MA: MIT Press. pp. 485-512.

6. Navarro-Prieto, R. and Canas, J.J., “Are Visual
Programming Languages Better? The Role of
Imagery in Program Comprehension.” International

Journal of Human-Computer Studies, 2001. (54): pp.
799-829.

7. Pane, J.F. and Myers, B.A. “Tabular and Textual
Methods for Selecting Objects from a Group,” in
Proceedings of VL 2000: IEEE International
Symposium on Visual Languages. 2000. Seattle,
WA: IEEE Computer Society. pp. 157-164.

8. Pane, J.F. and Myers, B.A. “The Impact of Human-
Centered Features on the Usability of a Programming
System for Children,” in Extended Abstracts for
CHI'2002: Human Factors in Computing Systems.
2002. Minneapolis, MN: pp. 684-685.

9. Pausch, R., Burnette, T., Capehart, A.C., Conway,
M., Cosgrove, D., DeLine, R., Durbin, J.,
Gossweiler, R., Koga, S., and White, J., “Alice: A
Rapid Prototyping System for 3D Graphics.” IEEE
Computer Graphics and Applications, 1995. 15(3):
pp. 8-11.

10. Ungar, D., Lieberman, H., and Fry, C., “Debugging
and the Experience of Immediacy.” Communications
of the ACM, 1997. 40(4): pp. 39-43.

Silvia Berti
68

Silvia Berti

Towards a Research Agenda in End User Development

Fabio Paternò
ISTI-CNR

Via G.Moruzzi 1
56100 Pisa, Italy

+39 050 316 3066
fabio.paterno@cnuce.cnr.it

ABSTRACT
This paper proposes a research agenda in the area of End
User Development. Its purpose is to stimulate discussion
rather than to provide a definitive solution. It is based on
the discussion carried out in the EUD-Net Network.

Keywords
End User Development, Research Agenda, End User
Modelling and Programming.

INTRODUCTION
While some substantial progress has been made in
improving the way users can access interactive software
systems, developing applications that effectively support
users' goals still requires considerable expertise in
programming that cannot be expected from most citizens.
Thus, one fundamental challenge for the coming years is to
develop environments that allow people without particular
background in programming to develop their own
applications, with the ultimate aim of empowering people to
flexibly employ advanced information and communication
technologies within the future environments of ambient
intelligence.
We think that over the next few years we will be moving
from easy-to-use (which has yet to be completely achieved)
to easy-to-develop interactive software systems. Some
studies report that by 2005 there will be 55 million end-
users, compared to 2.75 million professional users
[BAB00].
End-user development in general means the active
participation of end-users in the software development
process. In this perspective, tasks that are traditionally
performed by professional software developers are
transferred to the users. They need to be specifically
supported in performing these tasks. New environments
able to seamlessly move between using and programming
(or customizing) can be designed.
At the first EUD-Net workshop held in Pisa a definition of
End User Development was identified: “End User
Development is a set of activities or techniques that allow
people, who are non-professional developers, at some point
to create or modify a software artefact”.

REQUIREMENTS
Software practices – including use, design, development
and maintenance – seem to change character around
adaptable systems. As tailoring interfaces allows the user to
change the program, the border between use and design gets
blurred. As use, tailoring, adaptation, maintenance and
development projects get intertwined, they have to be co-
ordinated in a different way. Traditional borders defining a
project in this manner are often too rigid. Applications must
be tailorable, adaptable by their users or by domain experts
to meet the changing requirements. End User development
also means the adaptation and further development of
software in response to individual preferences, changing co-
operative work practices as well as the developing business
practices.
Model-based approaches can be useful for end-user
development because they allow people to focus on the
main concepts (the abstractions) without being confused by
many low-level details. Through meaningful logical
abstractions it is also possible to support participation of
end-users already in the early stages of the development
process. Optimally, model-based software development is
to be combined with prototype-oriented development.
In traditional software engineering, the Unified Modelling
Language (UML) [OMG] has become the de facto standard
notation for software models. UML is a family of
diagrammatic languages tailored to modelling all relevant
aspects of a software system; and methods and pragmatics
can define how these aspects can be consistently integrated.
UML is a general-purpose modelling language that comes
with built-in extension mechanisms and a so-called
profiling mechanism to support tailoring, adaptation and
extension for specific development processes and
application domains. These fundamental concepts of the
UML have started to be investigated for suggesting its
extension to user interaction and user interface modelling.
UML’s extensibility may as well be deployed to design an
end-user modelling profile containing user-oriented
language elements and domain-specific (end-user) profiles.
Like programming, modelling requires the availability of
suitable and usable languages and supporting tools to be
effective. Visual modelling languages have been identified
as promising candidates for defining models of the software
systems to be produced. UML and related tools such as

Silvia Berti
69

Rationale Rose are the best-known examples. They
inherently require notions of abstractions and should deploy
concepts, metaphors, and intuitive notations that allow
professional software developers, domain experts, and users
to communicate ideas and concepts. This requirement is of
prominent importance if models are not only to be
understood, but also used and even produced by end users.
Language usability needs to be empirically analysed.
Naturally, end-user development requires that the tasks
intended to be performed by end users have to be addressed
and solved beforehand on the more technical, underlying
levels. For example, dynamic reconfiguration of system
components (e.g. customisable interoperability) by end
users must be supported by underlying component models
and system architectures that technically enable this
interoperability and component reuse. Only after these
operations have been realized on a technical level, can such
tasks be effectively performed by end users on a more
abstract level.
The trade-off between expressiveness and usability is a
general concern in the area of end-user development. For
example, there are several direct manipulation
environments that allow easy assembling of applications.
Simple functionality can thus be easily constructed using
the graphical interface. However, more sophisticated
functionality and complex behaviour that go beyond simple
applications or early prototypes require the use of a
scripting language that is typically integrated with the visual
elements of the graphical user interface, thus requiring
specific programming skills.
End-user development has some important effects on other,
more technical levels of software. Administration of
customisable systems is far more complex than dealing with
mostly standardized configurations and implementations.
Component-based development raises issues of
standardized interfaces, interoperability, etc. Adaptability in
general requires ensuring program correctness and not
invalidating other required properties. Therefore, adequate
means for defining semantics and analysing system
properties in the presence of adaptation are needed to
restrict possible modifications.
The need for end user development is clearly emerging,
some approaches in the area of end user development (such
as programming-by-example), have long been considered
from a research point of view [C93], and are now started to
be used in widely used software such as MS-Excel.

THE RESEARCH AGENDA
In the first semester of the network life we have been able
to develop a more detailed discussion of promising research
lines in these area. In addition to these, we have to stress
that traditional software engineering metrics do not seem
suitable to evaluate the effectiveness of end user
development environments. Metrics that more closely
reflect value added to people and organizations should be
identified.

Incrementally formalised development
Often the initial model is the result of brainstorming by
either one single person or a group. Usually people start
with some paper or whiteboard sketches. This seems an
interesting application area for intelligent whiteboard
systems [LM01] or augmented reality techniques able to
detect and interpret the sketches and convert them into a
format that can be edited and analysed by desktop tools.
Most end-user development will probably benefit by the
combined use of multiple representations that can have
various levels of formality. The possibility of developing
through sketching can be highly appreciated in order to
capture the results of early analysis or brainstorming
discussions. Then, there is the issue of moving the content
of such sketching into representations that can more
precisely indicate what artefact should be developed or how
it should be modified.
A similar approach is followed when people try to use
informal descriptions in natural language such as scenario
descriptions for obtaining more structure representations.
An example is in [PM99] where starting from informal
scenarios it is shown how to use the information that they
contain to obtain more general task models.
Vocal interaction can play an important role in this respect
as well. Support for vocal interaction is mature for the mass
market. Its support for the Web is being standardised by
W3C [A01]. The rationale for vocal interaction is that it
enables the development of applications suitable for both
Internet and wireless communication, it makes practical
operations more natural and faster, and it makes possible
multi-modal applications (graphic and/or vocal).

End User Modelling and Programming
In order to ease the development process people need high-
level languages that highlight the important aspects to
consider. To support them there is a need for multi-layers
approaches able to map abstract functions and concepts
onto low-level programming constructs. The starting point
of a development activity can often vary. In some cases
people start from scratch and have to develop something
completely new, in other cases people start with an existing
system (often developed by somebody else) and need to
understand the underlying conceptual design in order to
modify it or to extend it to new contexts of use. Thus, a
general development environment should be able to support
a mix of forward and reverse engineering processes. This
calls for environments that can support various
transformations able to move among various levels (code,
specification, conceptual description) in both a top-down
and bottom-up manner and to adapt to the foreseen
interaction platforms (desktop, PDA, mobile phones, …)
without duplication of the development process.
Another important aspect to consider is the psychology of
programming that indicates what important psychological
aspects can have an impact on this activity. Whatever the
formalism or programming language used, the underlying
paradigm has a great influence on what programmers can

Silvia Berti
70

express and with what ease. However, there is little
information available on the cognitive features of
programming paradigms. As both users and designers of
those paradigms, computer scientists are usually more
interested in exploring the formal properties of paradigms
and formalisms, and the related software engineering issues,
than in understanding why they prefer such or such
paradigm. However, it is a fact that paradigms are more or
less easy to learn and apply depending on the task. A better
understanding of the underlying cognitive issues would be
as important to end-user programming as a better
understanding of the properties of interaction styles is to
user interface design. The graphical programming
environment that was provided with the first versions of
Lego's Robotic Invention System is a good example. Its
visual language is clear and easy to manipulate for children.

Integration of Visual Modelling and Innovative
Interaction Techniques
Recent years have seen a large adoption of visual modelling
techniques in the software design process (example are
Rationale Rose Together, Magic Draw, Enterprise
Architect, Poseidon for UML), but there are also research
environments publicly available such as CTTE [MPS02]).
However, we are still far from visual representations that
are easy to develop, analyse and modify, especially when
realistic case studies are considered. The application and
extension of innovative interaction techniques ([BMA01]),
including those developed in information visualization
(such as semantic feedback, fisheye, two-hand interactions,
magic lens…), can noticeably improve their effectiveness.

Flexibilization of software development
There is an increasing tendency to remove the barrier
between design and use. These activities tend to merge.
Agile methods [C02] address such issues. The agile
approach focuses on delivering business value early in the
project lifetime and being able to incorporate late-breaking
changes in requirements by accentuating the use of rich,
informal communication channels and frequent delivery of
running, tested systems, all while devoting due attention to
the human component of software development. Proponents
of the agile approach say that these practices lead to more
satisfied customers and a superior success rate of delivering
high quality software on time.
The concept of agility, referring to development methods
that are more people oriented than process oriented, and
emphasizing flexibility and adaptability over full
description, can have a strong impact on software
engineering.
Another important support in this respect is given by
environments for component-based deployment. Software
components and component-based design have received
much attention in the software engineering and application
development communities over the past years. Software
components allow systems to be built by starting from high-
level reusable building blocks instead of writing program
statements in a general purpose programming languages.

One of the great promises of composition is that it has the
potential to be performed at runtime (i.e., when the system
is in use). Connecting two components only requires 'glue
code' (i.e., a high-level script) that records the connections
between the components. However, the integration of
software components by end-users to make new
applications is far from trivial.
A critical bottleneck is that end users need to know what
interface methods are defined on the various components
and how they must be called to realise the integration of
two components. Interestingly, a model for software
component integration is Lego toy construction. Lego
allows great flexibility in how two components can be
coupled together. By keeping interfaces (connection points)
general, each brick can connect to many other bricks (of
different shapes). This generality is approached in software
by method interfaces that cater to many combinational
needs. However, the cost of generality (advantageous for
component developers) is paid at the expense of end-user
mastery because the connection points will often not have
intuitive (domain-specific) names and may require
parameters to be specified so that they can be used in many
combinations.

Architectural concepts for flexible systems
The need for flexible environments has implications also at
the architectural level. One example occurs when we
consider adaptivity for ubiquitous computing. Adaptive
environments help users to interact with their applications
by dynamically modifying their behaviour and functionality
while taking into account various aspects: user behaviour,
external environment, tasks to perform, interaction device
and so on. In this area it is of particular interest to design
applications able to address the many possible use
environments, on-the-fly dynamic configuration of
interaction devices and the rapidly increasing availability of
many types of devices (ranging from small phones to large
flat displays, including embedded computers in cameras,
cars, ..). This development will continue and computers will
start to vanish into the environment, and computational
power and networking capabilities will then become
ubiquitous.
This engenders the need for context-dependent applications
that can be supported by both adaptive and adaptable
techniques. When the system is adaptable it can be tailored
(manually) by the end users to fit their needs, work
practices, business goals, etc. The results will enhance user
competence and awareness of the system, allowing for
personal adaptations, with the creation of new
functionalities and user interface features. An important
aspect is that adaptations should be as unobtrusive as
possible (not interfering with the task itself). Thus, more
work is needed on user modelling and how it can improve
efficiency and effectiveness in end-user programming.
One of the main challenges for the success of ubiquitous
computing is the design of personalised user interfaces and
software that allows easy access to relevant information and

Silvia Berti
71

that is flexible enough to handle changes in user context
and availability of resources.

Application domains (home applications, …)
A number of application domains seem particularly suitable
for end user development environments. An example is
given by home applications. (Almost) everybody has a
home. It is possible to electronically interact with many
devices in a house. This means that the house potentially
can become one of the most popular applications for
information technology. Thus, it can be a domain where the
need for end user development will be particularly
important.

Cooperative end user programming.
Cooperative end user programming involves environments
that help end users to support each other in programming,
to share their programs and modified shared programs.
Given the fact that users typically have very different skills
and interests in tailoring or programming, there are many
different divisions of labour with regard to these activities.
Therefore, it is important to provide technical features
which support cooperative end-user programming. An
important aspect of this is to develop annotation and
manipulation tools that act on partial designs, allowing
users to customise software directly in individual or
cooperative working environments. In some cases it will
also be important to consider that the cooperation will
occur across people with various levels of expertise.

Tailoring environments
The possibility of tailoring applications is particularly
important in some end user development environments. In
these cases users modify existing environments in order to
tailor their functionality according their needs. This is
important also in mobile applications.

Software engineering for end users
The definition of end user development is based on the
differences between end- users and professional
programmers and software engineering. There are
differences in training, in the scale of problems to be
solved, in the processes, etc. However, there are some
similarities. Some of those similarities are to be found in the
life cycle of the developed software artefacts. For instance,
managing the successive versions of a piece of software will
most probably become a problem for end users. Version
management is already a problem with word processor
documents. However, one cannot expect an end user to
apply the techniques provided by the software engineering
field. Software engineering methods and tools require
knowledge of abstract models that end users do not have.
They imply the use of methods and tools that require
specific training. They probably consume more time than an
end user is willing to afford, etc. In addition, not all
problems from software engineering are equally important
for end users: team development techniques are most
probably beyond end users needs. Consequently, an

interesting line of research consists in identifying new sets
of techniques and tools that would be the counterpart of
software engineering for end users: software crafting.

CONCLUSIONS
After a discussion of the motivations and more relevant
requirements for end user development identified so far,
there is an early discussion of promising research lines that
if adequately supported can provide important results in
obtaining effective end user development environments. We
hope it can be useful to stimulate further discussion at the
CHI workshop.

ACKNOWLEDGMENTS
This work has been supported by the European Network of
Excellence EUD-Net (http://giove.cnuce.cnr.it/eud-
net.html). Support from the European Commission is
gratefully acknowledged. I wish to thank also all the
members of the networks for their useful contribution to the
preparation of this first research agenda.

REFERENCES
[A01] Ken Abbott, Voice Enabling Web Applications:
VoiceXML and Beyond. ISBN: 1893115739, APress L. P.,
2001
[BMA01] Beaudouin-Lafon M., Mackay E., Andersen P., at
al., CPN/Tools: A Post-WIMP Interface for Editing and
Simulating Coloured Petri Nets. Proceedings ICATPN
2001. pp.71-80, Springer Verlag LNCS N. 2075.
[BAB00] Barry W. Boehm, Chris Abts, A. Winsor Brown,
Sunita Chulani, Bradford K. Clark, Ellis Horowitz, Ray
Madachy, Donald J. Reifer, and Bert Steece, Software Cost
Esimation with COCOMO II, Prentice Hall PTR, Upper
Saddle River, NJ, 2000.
[C93] Allen Cypher, ed. Watch What I Do MIT Press 1993
[C02] Alistair Cockburn. Agile Software Development.
Addison Wesley. 2002
[LM01] Landay J. and Myers B., "Sketching Interfaces:
Toward More Human Interface Design." In IEEE
Computer, 34(3), March 2001, pp. 56-64
[MPS02] Mori G., Paternò F., Santoro C., CTTE: Support
for Developing and Analysing Task Models for Interactive
System Design, to appear in IEEE Transactions in Software
Engineering, September 2002.
[OMG] OMG Unified Modeling Language Specification,
Version 1.4, September 2001; available at
http://www.omg.org/technology/documents/formal/uml.htm
[PM99] F.Paternò, C.Mancini, Developing Task Models
from Informal Scenarios, Proceedings ACM CHI’99, Late
Breaking Results, pp.228-229, ACM Press, Pittsburgh, May
1999.

Silvia Berti
72

Position paper to the workshop on End User Development, CHI 2003

Prototyping Interactivity before Programming

John Sören Pettersson, Information Systems, Karlstad University, 651 88 Karlstad, Sweden
john_soren.pettersson@kau.se

ABSTRACT
A system for testing interaction design without the need for
programming is described. It is claimed that this tool will
make end-user driven development possible by introducing
laymen as designers and testers, not as programmers.

INTRODUCTION
In the call for the workshop it is pointed out that “The
interactive richness of new devices has created the potential
to overcome the traditional separation between end users
and software developers.” The invitation also states that
“There are studies that indicate that the end-user
programming population will be growing at more than 10
percent per year worldwide”. A substantial growth seems
indeed granted and we do in fact see more advanced
programming tools being developed. However, the
implication in the invitation to this workshop is that it is the
programming environments which need to be refined. In
this position paper I will argue for the pertinence of refining
another part of systems development: the phase of
conceptualization in which the interaction designed is
preconceived.
My starting point is that, in general, end-user involvement
in software development processes brings better, more
usable software about. I will argue for an end-user driven
development. However, I do not mean to imply that we can
skip usability tests altogether by trashing the expert
programmer, for instance replacing her with some any-user
who programs by demonstrations. Whatever software
produced by end users, such software might be used by
others than the originator. This raises the same questions
about usability as encountered in professional software
development. Who is to decide (design) for whom?
I am not arguing against end user programming, but I want
to direct the attention to issues which should come earlier in
the development process. How do users conceptualize
users’ needs? Especially, how are users’ needs concerning
interaction automation conceived by people with scant
insight in automatically generated responses?
At the workshop I would like to present the ideas behind a
tool, Ozlab, which was demonstrated at the last NordiCHI
conference in Denmark held in October 2002 (Pettersson &
Siponen, 2002). Below, I borrow from that presentation
(hence the format of this position paper!), but also add

some information on end-user driven conceptual
development of interfaces.
The Ozlab software has been developed at Karlstad
University in order to make it easy to test already on a
conceptual stage the interactivity of graphical user
interfaces, GUIs. The term GUI as used here does not mean
simply drop-down menus and dialogue boxes but more
graphically and spatially oriented interaction.

BASIC TECHNIQUE: WIZARD OF OZ
There is an experimental technique often employed in
language technology called ‘Wizard of Oz’ (Dahlbäck et al.
1993). In Wizard-of-Oz experiments a test person thinks he
writes or speaks to the computer in front of him when in
fact the test manager sits in the next room interpreting the
user’s commands and providing appropriate responses (see
Figure 1).

Figure 1. In Wizard-of-Oz experiments the test manager sits in
the next room interpreting the user’s commands and provides the

system’s responses. The system functionality is thus faked in a
way that makes it possible to test system proposals without

programming prototypes.

The reason why this deceptive technique has been popular
in language technology is simply that natural language
processing of either text or speech can be simulated even
when there is no unit available that understands natural
human language. Thereby dialogue structure can be tested
before one decides on how clever the automatic
interpretation has to be (e.g., whether to analyze individual
words merely or also syntactic structures). Automatic
interpretation of text or speech is difficult and the Wizard-
of-Oz technique thus gives systems developers a chance to

Silvia Berti
73

test systems before it is even possible to make them. This
kind of manual prototype could act as a stand-in for
working prototypes.

Extending the ordinary Wizard of Oz
It seems as if the mere deceptive property of this technique
has not been fully exploited. Since the system looks real to
the test user, one could use Wizard-of-Oz mock-ups to test
design ideas when there are reasons to believe that simple
tests by sketches and slides, as preferred and recommended
by usability experts (inter alia Klee, 2000; Cato, 2001, pp.
78ff), will not provide the right responses. For instance,
Molich (2002) notes that test subjects may behave less
explorative when testing a paper mock-up because they do
not want to bother the test leader. It is also a fact that the
look-and-feel of a paper mock-up will differ very much
from the final product. The latter point is especially
important when testing design alternatives on children or
when the person (company) who orders the system is
inexperienced and need a way to see various variants of his
own suggestions in working practice, i.e., he needs to see
the system proposals in interaction with users.

End users developing and testing concepts
When it comes to end-user driven development, the
importance of making the interactivity explicit must not be
underestimated. Naturally, one could argue that simple
programming tools would provide means for the non-
professional programmer to try out ideas. However, such
testing of ideas entails two drawbacks which are perhaps
easily overlooked:
1) Programming an interaction in advance will not inform
the designer of the user’s needs in the same way as a real
conversation does. In a Wizard-of-Oz experiment, the
designer is the system and will get a better feeling for the
computer responses needed by the user.
2) A programmed, autonomously functioning system is too
easily seen as ‘functional’ also in a task-oriented sense,
even if different design alternatives have not been tested.
Every programmer (and every designer) has a tendency to
refine rather than redesign. For instance, interaction
designer Bill Verplank notes this in an interview in Preece
& al. (1994, p. 467.):
“What happened was that they set out with some very fixed
notions early on, and simply kept refining them, so there
was no real comparison of alternatives. There was really
only one idea and they refined it and refined it […] No-one
was ever very satisfied with the design and what I attribute
that to was that they had a working prototype even before
they decided what the product was going to be.”
From this perspective there would appear to be a problem
with any simplified programming technique, because it will
always be tempting to stick to the first shot because it
‘works’. An Oz prototype never ‘works’. On the other hand,
it is easy to change the interaction design and every test-run

informs the designer in a way which is simply not
conceivable with working prototypes. When we were
constructing Ozlab, we used three inexperienced designers
(i.e. inexperienced as UI designers) to run tests on their
own designs. They matured very quickly in their roles as
wizards, and it was obvious that for them it was quite a
thrill to interact with their clients through their designs
(Pettersson, 2002b). In this sense Wizard-of-Oz prototypes
really work.
I could add that the temptation to test-run one’s prototypes
on your own is very small when dealing with Oz
prototyping. By being manual, any Oz test will always ask a
reason for why it is performed. It will seem futile to test it
on your own when the prototype is manual (this holds for
single-person test by having two screens next to each other
as well as for peer-testing within the design group).
Furthermore, the thrill noted already on our first wizards
when they were conducting a Wizard-of-Oz test is very
satisfying from a methodological perspective: it indicates
that user-involvement is preferred by naive designers.
(Pettersson, 2002a)

MAKING GUI TESTING SIMPLE
A problem, however, with modern interactivity tests, is that
they are not as easily performed as a Turing test. It is not
enough with voice or text input followed by voice and text
output from the computer. Graphics has to be included.
Therefore, when we designed Ozlab, it was to make
possible fluent tests with ordinary PC interfaces. The
graphical details have to be there during a test – that
requirement cannot be conjured away. But ordinary GUI
behaviors like moving objects and disappearing /
reappearing objects are already pre-programmed in Ozlab,
so that the wizard only connects such functionality to the
objects when putting the graphics in place. This
functionality then allows for easy manipulation of the user
interface during a test. (However, I have to admit that the
building of the prototype file is done in Macromedia’s
Director, which contains a plethora of advanced functions, a
fact which is bewildering for a naive designer even if they
do not have to use them.)

The ‘graphical’ input channel
Some researchers and system developers have been
conducting experiments described as ‘multimodal’, often
implying that the test user has access to more than a single
input channel. For our Ozlab we have focused very much
on the ordinary PC set-up with mouse input. But
experiments with keyboard input as well as simulated
mobile phone output have also been conducted.
Primarily, Ozlab is intended for the interaction to be
simulated. It does support showing videoclips on the test
user’s monitor, but a ‘multimedia’ piece like that is not
really dependent on interaction with the user.

Silvia Berti
74

We have concentrated on how to let the wizard respond
graphically by direct manipulation of the users GUI. (Voice
response is of course also very easily produced in any
Wizard-of-Oz test including Ozlab-tests as explained in the
following section.)

Graphical interaction vs. linguistic interaction
The graphical output does not demand the same exactness
as text output in ordinary Wizard-of-Oz prototyping where
spelling mistakes will be very revealing. This fact makes it
easier to test graphical ‘dialogues’ than to test linguistic
dialogues.
However, it should be noted that pre-written sentences can
easily be made visible in Ozlab like any other graphical
object. Furthermore, Ozlab allows for free text output as
well, and also free voice responses through a voice-
disguising unit. The latter has been very much used by
some of our wizards to test spoken comments to graphical
demonstrations. But Ozlab is not primarily designed to
support linguistic output in contrast to the set-up in the
above-referred study by Dahlbäck et al. (1993). I felt the
need for a WOZ tool for simulating the graphical
interaction made possible by direct manipulations in GUIs.

Short time-to-test and testing adaptive UIs
It should be observed that because not much more than the
graphics and a few wizard-supporting functions attached to
each graphic object is needed before test trials can be run,
the Ozlab system could be used for improvisation –
explorative experiments – as well as for ordinary tests of a
pre-defined response scheme. A combined form will allow
for testing various parameter-settings in adaptive interfaces.

Some further data about Ozlab
The Ozlab system was operational in August 2001 and has
since then gone through several revisions. It has been used
to let inexperienced designers as well as persons of various
levels of design expertise make interaction designs. Short
descriptions on works so far conducted with the Ozlab
system is found on the (more or less up-dated) project web
site www.cs.kau.se/~jsp/ozlab.
It should perhaps be pointed out, that the Ozlab software
could be run outside the laboratory on any pair of laptops or
ordinary PCs, which makes it possible to make mock-up
prototyping on site. Of course, some of the wizard
functionality is affected of the locality. Most notable is this
for any guiding voice from the faked system when such
voice messages are not pre-recorded or delivered by text-to-
speech systems, but instead made by the wizard herself. For
such a true WOZ set-up to work, the test user has to be out
of hearing distance of the wizard.

ETHICAL AND IMPLEMENTATIONAL PROBLEMS
Naturally, it should be recognized that faking a system as in
the Wizard-of-Oz experiments may cause some ethical

problems, especially if these experiments are to be
performed by people who are not schooled in usability
testing. Furthermore, the interaction taking place during a
Wizard-of-Oz experiment may not always be easily
implemented in a computer program. In particular, this may
be the case if linguistic interaction takes place. Compared
to linguistic responses it is easier to keep graphical
responses within the limits of what may be implemented.
A further defense of Oz prototyping could be derived from
authors stressing the need to keep design and
implementation apart (Cooper, 1999; Löwgren 1995). End
user design as described above could be followed by
professional implementation. Communicating the Oz
prototype to the computer experts could probably be done
with video and screen recordings. Likewise, a multimedial
form of design description makes it possible to
communicate in a precise manner also to less professional
developers, like local champions of IT.

REFERENCES
Dahlbäck, N., A. Jönsson & L. Ahrenberg (1993) Wizard of
Oz Studies – Why and How. Knowledge-Based Systems,
Vol. 6, No. 4, pp. 258-266.
Cato, J. (2001) User-Centered Web Design. Addison-
Wesley, Harlow, England.
Cooper, A. (1999) The Inmates are Running the Asylum.
SAMS publishing.
Klee, M. (2000) Five paper prototyping tips. UIE
Newsletter Eye for Design, March/April. Also at
http://world.std.com/~uieweb (inspected 2001-03-07).
Löwgren, J. (1995). Applying design methodology to
software development. In Symposium on Designing
Interactive Systems, DIS'95 Proceedings, pages 87–95.
New York: ACM Press.
Molich, R. (2002) Webbdesign med fokus på användbarhet.
(trans. from Danish Brugervenligt webdesign, 2000).
Studenlitteratur, Lund.
Pettersson, J.S. (2002a) “Naïve designers as concept
developers and test managers”. In Promote IT2002, Part I.
Skövde, April 22-24, 2002, Eds. J. Bubenko & B. Wrangler.
Skövde: University College of Skövde. Pp 136-146.
Pettersson, J.S. (2002b) “Visualising interactive graphics
design for testing with users”. Digital Creativity vol 13 (3):
143-155.
Pettersson, J.S. & J Siponen (2002c) Ozlab – a simple
demonstration tool for prototyping interactivity.
Demonstration at NordiCHI 2002, October 19-23, 2002,
Aarhus, Denmark. Pp. 293-294
Preece (1994) Human-Computer Interaction. Addison.

Silvia Berti
75

Fostering End-User Participation with the
Oregon Groupware Development Process

Till Schuemmer
FernUniversitaet Hagen

Computer Science VI - Distributed Systems
Universitaetsstrasse 1

55084 Hagen, Germany
+49-2331-987-4371

till.schuemmer@fernuni-hagen.de

Robert Slagter
Telematica Instituut

P.O. Box 589,
7500 AN, Enschede,

The Netherlands
+31-53-4850-488

robert.slagter@telin.nl

ABSTRACT
This position paper outlines the Oregon Groupware
Development Process, which fosters user involvement in
all stages of groupware development. It combines several –
up to now often unrelated – design techniques such as
iterative development, tailoring, or participatory design.

INTRODUCING SUMMARY
Groupware applications are becoming more and more
important in the context of distributed collaboration and
new enterprise models, such as virtual organizations.
However, we still observe a lack of a proper design
methodology for groupware applications that heavily
involves end-users and fosters reuse of existing knowledge
from the area of groupware research.
Thus, we strongly advocate participatory design of
groupware, where social experts, technical experts and end
users are involved throughout the design process. We
propose the use of patterns to reuse existing design
knowledge and facilitate communication between the
various stakeholders. The process consists of several short
design iterations (using prototypes and mock-ups) where
various aspects of the system can be discussed, tested, and
modified as soon as possible.
Patterns for groupware design play a central role in our
approach. We apply these patterns both for developing and
for tailoring groupware. Since the collaborating people
themselves are the ones most affected if the groupware
does not properly support their cooperation, they should be
empowered to adapt their groupware systems. As tailoring
operations are performed by end users, the groupware
patterns need to be in a form that is understandable by
these end users. To start such tailoring operations, end
users have to diagnose (reflect on) their collaboration,
discover indications of problems and apply a proven
solution, as described in our groupware patterns.
Accompanying our approach, we have defined a new

pattern structure that is appropriate for both types of
stakeholders. This is of utmost importance, since in our
approach (in contrast to other pattern approaches) patterns
are used for programming, tailoring and to foster shared
understanding throughout the participatory design
trajectory. So, in contrast to existing pattern approaches,
our patterns should also be suitable to help end-users tailor
the behaviour of their groupware application.

DESIGN PATTERNS AND THE OREGON EXPERIMENT
Today, design patterns are widely accepted in the software
development community. By means of design patterns, one
can describe expert knowledge in the form of rules of
thumb. These rules include a problem description, which
highlights a set of conflicting forces and a proven solution,
which helps to resolve the forces.

Initially, patterns were developed in architecture, used
by non-experts in the context of a participatory design
process. The foundation for this process lies in the
philosophy of Alexander, which becomes clear in [3]:

“The people can shape buildings for themselves, and
have done it for centuries, by using languages which I call
pattern languages. A pattern language gives each person
who uses it, the power to create an infinite variety of new
and unique buildings, just as his ordinary language gives
him the power to create an infinite variety of sentences.”
(p. 167)

Every user of a building or a place should have the freedom
to shape the environment, in which he acts. This basic idea
was institutionalised in the planning process of the campus
of the university of Oregon – the Oregon Experiment [2].
The process defines six basic principles: organic order,
participation, piecemeal growth, patterns, diagnosis, and
coordination. Some of these principles can shape a
groupware design process. We will explain their
application in the Oregon experiment, and investigate how
to apply them to groupware development.
Participation ensures that the final users will be part of the
planning process and therefore participate in shaping their
environments. Alexander defines it as a

 “…process by which the users of an environment help to
shape it. The most modest kind of participation is the kind
where the user helps to shape a building by acting as a
client for an architect. The fullest kind of participation is
the kind where users actually build their buildings for
themselves.” ([2] p. 39)

Silvia Berti
76

In the Oregon Experiment, this principle led to a very
successful campus design [11]. The University established
a user group that contained students, faculty members, and
staff. The user group then decided, which projects should
be built in the next phases. In a refinement phase, special
focus groups (users with specific interests) concentrated on
one aspect of the building.
Piecemeal growth. By concentrating on one part at a time,
one follows the principle of piecemeal growth. This
includes identifying one concrete problem and finding a
solution for this problem.
Patterns. To empower end users to find working solutions,
they necessarily need a way of accessing previous proven
solutions. Patterns fulfill this role. They are the essential
language- the Lingua Franca as Erickson calls it [4] in the
domain of HCI – that is used in the user group. In the
formation phase of the community, the members agree on a
common set of patterns (taken from a pattern language [1]).
Although patterns are proven solutions, they are not static.
Users are encouraged to enhance or correct the patterns.
These new patterns will then be incorporated in the
community pattern language, as long as the whole
community agrees with the adaptation.
Diagnosis is the process of analysing the existing campus
regarding aspects that work and aspects that do not work.
This includes a phase of reflection: during the use of the
environment, users are encouraged to step back and ask
themselves, whether or not the environment serves their
needs. If not, they are asked to mark the deficits and thus
state change requests for the environment.

CURRENT GROUPWARE DEVELOPMENT
APPROACHES
The process of groupware development is currently
supported by different technologies and methods. These
include iterative processes, participatory design, tailorable
software design, and the use of software patterns to ease
the design of the groupware application. All these
technologies and methods have been part of the Oregon
experiment for many years now. In this position paper, we
concentrate on participatory design and tailorable software
design and compare them to the Oregon experiment.
Participatory design is a design approach that “puts
people first”. In participatory design (prospective) end
users are involved in the design of new systems. The end
users are in tight interaction with the designers, but the
designers still do all design activities.
Since participatory design is based on the interaction
between (prospective) users, social experts and technical
experts, these people need a common language to discuss a
design and implications of design decisions. Given the
different backgrounds of social experts, technical experts
and (prospective) users, reaching a shared language is not
trivial.
The main difference between the user groups in the Oregon
experiment and participatory design in software

development is that in the Oregon experiment the users
really acted as designers. This ensures that the users’
wishes are really reflected in the resulting design. Using a
shared pattern language helped reducing communication
problems.
We see a possibility to improve groupware design practice
by providing users with a means to express their ideas
throughout the whole design process and come up with
their own groupware design. As in the Oregon experiment,
patterns play an important role in this phase.
Patterns have become very prominent in software design.
But the design pattern approaches concentrated on the need
of patterns for software developers. This is different to the
intended way, as presented in the Oregon Experiment. The
patterns of Alexander et al. concentrated on the user, who
needs to solve a very personal problem. We therefore argue
that groupware design should use patterns to inform the
users about proven solutions in the field. This implies that
groupware patterns need to be in a form that is
understandable by end-users.
Tailorable software can be adapted within the context of
its use [6]. In a collaborative setting the collaborating
people themselves, the tasks they perform together, and the
context in which they perform these tasks all change over
time. This all contributes to changing requirements (or
forces) on the technology support. One can observe that
groupware systems must evolve because they cannot be
completely designed prior to use. This evolution has to take
place at the hand of the users, as they are the owners of the
problems. The systems must therefore be designed for
modifications, to suit evolution of use [10]; ([13]; [12]).
Tailorable groupware offers end-users the possibility to
adapt system behaviour as well as the look and feel of the
system in the context of collaboration, not as a separate
design activity. The challenge here is to provide
opportunities for tailoring that are appropriate for the
people who need to make changes. The way tailoring
options are presented to users should match their mental
model, since the tailors have to understand when and how
they should adapt their software application.
In the Oregon experiment, tailoring was described as
process of diagnosis and repair. Repair meant that the users
proposed the application of high-level patterns. Anyhow,
end-users were not able to implement the patterns since
changing buildings requires special builder’s skills.
Software components could be user-pluggable, if the
process of applying or integrating them is intuitive to the
user. The results of tailoring operations were reintegrated
in the Oregon process by adapting patterns.
The principle of diagnosis is present in most iterative
processes. It should also be present as end-user reflection:
the collaborating people reflect at regular intervals whether
the provided technical support still matches their tasks.

Silvia Berti
77

THE OREGON GROUPWARE DEVELOPMENT
PROCESS
We propose a groupware development process that
combines all four process principles, which we call the
Oregon Groupware Development Process since it was
inspired by Oregon experiment. It intends to foster end-
user participation, pattern-oriented transfer of design
knowledge, piecemeal growth in form of short iterations,
and frequent diagnosis or reflection that leads to an
improved groupware system.

Ex
pe

rt

In
vo

lv
em

en
t

3

8

2

6

10

5

7

9

User
Involvement

4

1

Analysis
of forces

Planning
Conflicting

forces
use

cases

Design

Pattern Driven

Component Selection

- high level patterns -

Pattern Driven

OO Groupware Design

- low level patterns -

Pattern

selection

Im
ple

men
tat

ion Obje
ct-

Orie
nte

d

Dev
elo

pm
en

t

-Fram
ew

ork
s-

Soft
ware

Com
po

sit
ion

- C
om

po
ne

nts
 -

Usa
ge

 w
ith

Diag
no

sis
 / R

efl
ec

tio
n

- h
ea

lth
 m

ap
 -

fun
cti

on
al

tes
ts

- a
uto

mate
d

tes
t-c

as
es

 -

Fig. 1. The Oregon Groupware Design Process

Figure 1 shows the different phases of the process. It
suggests three different kinds of iterations. In the following
paragraphs, we will explain these three kinds of iterations
(numbers refer to the step number in figure 1). In the actual
execution of the process, each kind will be executed many
times (like in the spiral model).
Throughout all iterations, the users participate and work
with a shared groupware pattern language (first patterns of
this language are available at the groupware-pattern
catalogue [9]). This language contains patterns on two
levels: low-level and high-level patterns. Low-level
patterns describe solutions, which the end-user will not be
able to apply alone. One reason for this might be that the
solution cannot be encapsulated in a high-level component,
which means that the functionality crosscuts the existing
component structure. High-level patterns can be
implemented by adding groupware components (without
the need of changing the component’s code). If the process
of adding the component is easy enough end users can
execute these patterns. Macro-level patterns are special
high-level patterns that describe the combination of several
high-level patterns.
In contrast to traditional participatory software design, our
groupware patterns approach aims to provide users with

profound design knowledge. This knowledge empowers
the end-user to act as a designer and solve some issues,
without having to escalate these issues to a designer.
The innermost inceptive iterations comprise the activities
of (1) use-case analysis and (2) the selection of appropriate
patterns. First, the users make up their mind on the usage of
the system by specifying simple use cases. These can be
stories (for users, who are not familiar with formal use-
cases) or success scenarios, which describe the use-case’s
story in a more formal way.
The use cases then drive the selection of initial patterns
from the groupware-patterns catalogue, which serve as
starting points for exploring the different forces in the area.
During the inceptive iterations, the end-users will be highly
involved. According to their knowledge in groupware
patterns, they can perform the iterations without any expert
guidance. But in most cases, there will be social experts
and technology experts, who support the users in writing
stories, discovering the social functions that need to be
supported, and pointing the users to appropriate sets of
patterns. One result of inceptive iterations is a common
pattern language, which then eases the process of
communication.
The second set of iterations is made up from (3) the
detection of conflicting forces, (4) a pattern-driven object-
oriented design, (5) the implementation of this design using
object-oriented development technologies like frameworks
or low-level components, and (6) functional tests. We call
these iterations development iterations since they form the
part of the process, where software engineers develop the
application.
The user first identifies the conflicting forces. Developers
will assist the user in this task, by structuring the
discussion. Together with the user, the developer then
seeks for low-level groupware patterns, which resolve the
identified forces. Developers implement the pattern by
means of application frameworks or developer-centred
component frameworks. This normally involves the
development of new software components. The
components can be built using groupware frameworks or
other base technologies. To ease the implementation, each
groupware-pattern can have technology recipes that show
how the pattern is implemented with a specific technology
(using the cookbook style that was described in the
Assembly Cookbook pattern [5]).
The result is tested using as much automated tests as
possible (note that phases 5 and 6 are executed in reverse
order, if the eXtreme Programming process is combined
with our development process). Phases (3) to (6) require a
groupware-expert and software developer to be involved.
The user still makes an important contribution to the design
because he participates in steps (3) and (4).
When the development of the groupware system is
complete, the end-user starts using it for the desired
purpose. While using the system, end-users with pattern-
based groupware design knowledge are encouraged to (7)

Silvia Berti
78

reflect on their activities. This reflection in action [8]
reveals actions that complicate or hinder the work process.
High-level groupware patterns (8) help in this process by
describing frequently occurring issues, the various forces
and a proven solution in a way that is appropriate for
tailoring end users. Based on high-level patterns the user
can now select (9) and combine (10) the groupware
components that suit his needs.
It is important to note that the user will perform tailoring
operations on his own. Typically, there will be no software
developer available to assist him. So, the task of tailoring
must be appropriate for the end user.

Groupware templates
Macro-level groupware patterns describe even more than
just the need for the integration of a single component.
They act as templates, and describe aspects such as a set of
people, the tools they use to collaborate (communication
means and shared information objects), possibly also
coordination policies that apply during an online meeting
and the roles of specific participants. Some of these aspects
may not be fully specified in the pattern: if e.g., the pattern
does not specify which people should be invited for a sales
meeting, the groupware system can query the user for this
information when the pattern is applied.
The high-level patterns and the macro-level patterns have
to be written in a form that suitable for an end-user, who
acts as tailor. The tailoring environment should supports
him in the process of (10) composing the identified
components. The collaborative nature of groupware
provides many triggers for tailoring operations [7] (e.g., by
observing each other’s tailored systems) and offers
opportunities for sharing tailored artefacts [14].

CONCLUSION
The Oregon Groupware Development Process presented in
this paper is a design methodology for groupware
applications that heavily involves end-users and fosters
reuse of existing knowledge from the area of groupware
research. We believe such a process is needed to empower
people to flexibly employ groupware applications.
Examples of groupware patterns as mentioned in this paper
can be found in the groupware-pattern catalogue [9]). We
are in the process of validating our approach in real-life
collaborative settings.

REFERENCES
1. Alexander, C., Ishikawa, S., Silverstein, M., Jacobson,

M., Fiksdahl-King, I. and Angel, S.: A pattern
language. New York: Oxford University Press, 1977.

2. Alexander, C., Silverstein, M., Angel, S., Ishikawa, S.
and Abrams, D.: The Oregon Experiment. New York:
Oxford University Press, 1980.

3. Alexander, C.: The timeless way of building. New
York: Oxford University Press, 1979.

4. Erickson, T.: Lingua Francas for Design: Sacred Places
and Pattern Languages. Proceedings of Designing
Interactive Systems (DIS 2000), ACM Press: Brooklyn,
NY,2000.

5. Eskelin, P.: Assembly Cookbook Pattern.
http://c2.com/cgi/wiki?AssemblyCookbook: 1999.

6. Kahler, H., Mørch, A., Stiemerling, O. and Wulf, V.:
Tailorable Systems and Cooperative Work
(introduction). In Special Issue of Computer Supported
Cooperative Work, 9 (1), 2000.

7. Mackay, W. E.: Triggers and barriers to customizing
software. Proceedings of ACM CHI '91 Human Factors
in Computing Systems, ACM/SIGCHI: New Orleans,
Louisianna,1991.

8. Schön, D.: The Reflective Practitioner. How
Professionals Think in Action.. New York: Basic
Books, 1983.

9. Schuemmer, T., Fernandez, A. and Holmer, T. (Ed.):
The Catalog of Groupware-Patterns, Available online
at: http://www.groupware-patterns.org 2002.

10. Slagter, R., Biemans, M. and Ter Hofte, G. H.:
Evolution in Use of Groupware: Facilitating Tailoring
to the Extreme. Proceedings of the CRIWG Seventh
international Workshop on Groupware, IEEE Computer
Society Press: Darmstadt,2001, 68-73.

11. Snider, J. R.: User Participation and the Oregon
Experiment as Impolemented with the Esslinger Hall
Recreation and Fitness Center.
http://darkwing.uoregon.edu/~jsnider/esslinger.html:
1999.

12. Stiemerling, O.: Component-based tailorability. Bonn,
Germany: University of Bonn, 2000.

13. Teege, G.: Users as Composers: Parts and Features as a
Basis for Tailorability in CSCW Systems. In Computer
Supported Cooperative Work (CSCW), 9 2000, pp. 101-
122.

14. Wulf, V.: 'Let's see your Search-Tool!' - On the
Collaborative use of Tailored Artifacts. Proceedings of
GROUP '99, ACM-Press: New York,1999, 50-60.

Silvia Berti
79

Position paper for CHI workshop on EUD

Design Principles and Claims for End-User Development

Alistair Sutcliffe

Centre for HCI Design
Department of Computation, UMIST

PO Box 88, Manchester M60 1QD, UK
a.g.sutcliffe@co.umist.ac.uk

1. Introduction

EUD essentially out-sources development effort to the end user. Hence it imposes cost of
additional design time and learning EUD tools. These costs are critical because end users are
busy people for whom programming is not their primary task. They only tolerate development
activity as a means towards the end that they wish to achieve; for instance, creating a
simulation, experimenting with a design, building a prototype. User motivation is derived
from perceived benefits and actual rewards from creating working systems. The key to
success or failure EUD, I will argue in this paper, is to maintain a positive balance between
user motivation and cost. Design principles should focus design toward that end. However,
design principles can only provide high-level guidance that has to be interpreted in a specific
design context. Consequently I will elaborate EUD principles as asset of claims (Carroll,
2002).

2. Principles for EUD

The aim for all design is to achieve an optimal fit between the product and the requirements
of the customer population, with minimal cost (see Sutcliffe 2002 for more details).
Generally, the better the fit between users’ needs and application functionality, the greater the
users’ satisfaction; however, product fit is influenced by the application scope i.e. the
generality/specialisation of the domain. This can be summarised in the principle of user
satisfaction:

• The user satisfaction supplied by an EUD environment will be inversely proportional
to domain scope and variability in the user population.

The consequences of this law are that more general EUD systems either have to have more
motivated users, or motivate their users more. Furthermore a heterogeneous user population
will be more difficult to satisfy, because getting the right fit for each sub-group of individuals
becomes progressively more challenging and expensive. The second consequence is that
general applications tend to be more complex; and people have a larger learning burden with
complex products. General products may not motivate us to expend development effort
because the utility they deliver is less than a perceived reward from satisfying our specific
requirements:

• The effort a user will devote to customising and learning software will be
proportional to the perceived utility of a product in achieving a job of work or
entertainment.

User motivation will depend critically on perceived utility and then the actual utility payoff.
For work-related applications we are likely to spend time customising and developing
software only if we are confident that it will empower our work, save time on the job and
raise productivity. Development effort can range from customisation of products by setting
parameters, style sheets and user profiles, to designing customised reports and user interfaces

Silvia Berti
80

with tools, to full development of functionality by programming or design by configuration of
reusable component. Adaptable products provide users with these facilities but at the penalty
of increasing effort. In contrast, adaptive products take the initiative to save users effort, but
the downside is when the adaptation creates errors.

Adaptation is fine so long as it is accurate, but when the machine makes mistakes and adapts
in the wrong direction it inflicts a double penalty because incorrect adaptation is perceived as
a fault. This lowers our motivation to use it effectively, and leads to a third principle:

• The acceptability of adaptation is inversely proportional to system errors in
adaptation.

Inappropriate adaptation inflicts a triple penalty on our motivation from the cost of diagnosing
mistakes, cost of working around the problem, and negative emotions about systems usurping
human roles). Design of EUD therefore has to concentrate on cost minimisation either by
appropriate automation in adaptive systems, or by leaving the initiative with the user and
thereby imposing more costs. Costs and rewards are going to be influenced by the type of user
and their domain that can be expressed as a scenario. Design issues concern the modality and
intuitiveness of communication, expressive power of the EUD language, and system
initiative. In the following section I describe these issues as claims for EUD.

3. Claims for EUD.

Claims are a form of extended, psychologically motivated design rationale that express a
design principle, with usability and utility trade offs, set in a context of use by a scenario,
with a specific design that exemplifies the principle. The first claim focuses on a specific
domain for EUD:

Claim ID: Domain specific EUD Language for Protein Biology.
Claim: A formal sub language is created with domain specific lexicon and syntax that allows
users to create executable procedures and queries.
Upsides: The formal sub language is already part of the user’s domain knowledge so it is easy
to learn. The formal sub language restricts interpretation errors.
Downsides: The sub language will not be extensible to other domains. The sub language may
be difficult to change and evolve.
Scenario: Simon is a molecular biologist who works with Proteases. He needs to simulate the
structure and behaviour of new peptide structures. He composes a new peptide by picking
amino acids from a palette, and then parameterises the simulation by identifying target
proteins for the protease to react with a range of Ph and temperatures. The system creates a
visualisation of the protease as it reacts with the protein over time according to the range of
Ph and temperature conditions.
Example: Comp <NewProtease>::= Lys, Asp, Glut, …
 React <NewProtease> + AclCoH, EndoPh, Serot With Ph<4.5 -> 6.7 inc 0.1>; C 10
� 20 inc 1.0
 VisStruct Tint = 5 secs

Note that assumptions about the user’s domain knowledge in the scenario are necessary for
interpretation of the claim and its trade offs. A closely related claim describes a direct
manipulation design in which the user picks amino acids from a palette and set the simulation
parameters by a set of sliders and buttons. This GUI style design would have trade offs of
being easier to learn for users not familiar with the sub language but the downside of less
flexibility since the parameters and amino acids in the palette would have to be fixed by the
design. Of course another EUD interface could be added to programme the interface, and that
would be expressed in another claim. The second claim describes a more general application:

Claim ID: Robot Programme by example.

Silvia Berti
81

Claim: Instructions for programming a robot are given with a graphical simulation system that
detect movements of the robot and automatically generates instruction for programming a real
robot.
Upsides: Programming is easy for users who just have to demonstrate the behaviour they
want.
Downsides: Complex instructions are difficult to express by demonstration; the conceptual
model of instruction may not be clear to users.
Instructions can be misinterpreted if the demonstration is not clear.
Scenario: Katie wants to programme her robot for the computer football competition. She
starts the robot instruction environment, which shows her the arena divided into squares, with
icons for her robot and opposing team’s robot. She has to give her robot instructions to
manoeuvre past the opposition and score a goal. She sets the recognise button on and moves
her robot so it collides with the opposition. Then she sets the react button on and moves her
robot back one square, then to the left and then forward two squares. Katie then selects the
test button and moves her robot to collide with the other one and observes the response
generated by the system. When she is happy with the result she presses the download button
and connects the physical robot she has designed.
Example: Legoland robot control system.

In this claim a semi automated programming by example is proposed. The downside draws
attention to the limitations of this approach, for instance longer sequences become
progressively more difficult to interpret, and Katie might have had problems in grasping the
conceptual model so that it is better to give short declarative instructions rather than long
procedural sequences. A related claim <Robot instruction sub language> that proposes a
specific language for instructing the robot (i.e. If collide Then Move N/W/S/E; x spaces) is
related to the first domain specific language claim but may have different upsides depending
on the scenario context. For instance it may be desirable to make the language explicit so
children learn control abstractions.

The third claim addresses a more general problem.

Claim ID: General Purpose EUD simulations.
Claim: The EUD environment combines editors for building graphical simulations with form-
filling dialogues for specifying rules that control agents’ behaviour.
Upsides: EUD environment is very powerful because it can be used for a wide range of
applications.
Combination of the graphic simulation and declarative rule-based instruction is easy to learn.
Downsides: Solutions to complex applications may not be easy.
Building graphical simulations are time consuming.
Rules can have complex and unpredictable interactions in complex systems.
Scenario: Alex has been challenged to build a programme that can simulate a soccer game.
He starts the AgentSheets system and builds icons for players and the graphics for the football
pitch. Then he starts to enter rules for the player’s behaviour when they have the ball and hear
an opposing player, near the goal, etc. He runs the simulation but the player’s behaviour
doesn’t look right, furthermore, he has a large number of rules for each type of player and the
number of unexpected interactions is increasing. Then he has a brainwave and creates a data
structure that maps the football field into zones of attractive or repulsive force. This simplifies
his rules since his agents just have to maximise their attraction towards the opposite goal and
repel opposing players. He re-runs the simulation and the player’s behaviour follows real life
patterns.
Example: AgentSheets EUD environment.

This claim is partially related to Robot Programming sub Language but it deals with the
merits of a more general EUD environment. The scenario plays a dual role, first it provides a
context for interpreting the general EUD environment claim, and secondly, problems

Silvia Berti
82

described within motivate development of new claims. For instance the problem with
interacting rules and solutions using a data structure representing force attraction could
suggest a claim about creating a reuse library to share conceptual models for solving difficult
problems. Furthermore, the long time taken to create the graphics, expressed in one of the
downsides, could indicate a similar claim for sharable graphics libraries.

4. Conclusions

Claims provide a powerful way of representing design knowledge for End User Development
because scenarios provide a rich context for interpreting the advantages and disadvantages of
a particular design approach. Setting claims with a perspective of cost-benefit analysis should
also help to check the reality of different design approaches and assess the competitive
advantage of EUD over other development paradigms such as customisable COTS software.
However, scenarios also beg the question of completeness. Creating a necessary and
sufficient set of scenarios to brainstorm all the possibilities for EUD would be a marathon
task, and is unlike to be completeable. On a more optimistic note, taking a claims oriented
approach to investigating the EUD problem space does allow design to be developed form
concrete description of need (in scenarios) and evolving a network of related claims could lay
the foundation for a library of EUD design knowledge.

References

Carroll, J. M. (2000). Making use: Scenario-based design of human-computer interactions.

Cambridge MA: MIT Press.
Sutcliffe, A. G. (2002). The Domain Theory: Patterns for knowledge and software reuse.

Mahwah NJ: Lawrence Erlbaum Associates.

Silvia Berti
83

Figure 1: Distribution of Control over Representation shared by

Information Producer and Information Consumer.

The Pragmatic Web: Customizable Web Applications

Alexander Repenning
Department of Computer Science

Center for LifeLong Learning & Design
University of Colorado, Boulder CO 80309-0430

ralex@cs.colorado.edu

INTRODUCTION

Information is no longer a scarce resource. However,
this achievement is largely useless if information is
not provided in a format tailored to the user. Most
people in the United States now have access to online
information thanks to inexpensive computers and
information appliances [1], and public access to
computing resources in libraries and other
institutions. Web-based information can be accessed
– through wires or wirelessly – from desktop
computers, laptops, PDAs, cell phones, and
specialized information appliances. However,
ubiquitous information access does not imply
universal information access. The representational
formats chosen by information producers often do not
match the needs of information consumers. For
instance, a Web page may contain highly relevant
information to a user, but this information cannot be
accessed if the user cannot see or cannot read.
Reasons for producer/consumer information
representation mismatch include:

• Wrong Modality: Blind users cannot read textual
descriptions. Automatic text-to-speech interfaces
may be able to verbally convey the textual
contents of a Web page to users, but if the Web
page is formatted for visual access, the sequential
presentation of information as speech may be
unintelligible or inefficient.

• Wrong Language: Crucial explanatory text may
be provided in the wrong language. Less than
15% of U.S. Web sites contain Spanish
translations [2].

• Wrong Nomenclature: Information may be
expressed in an unfamiliar measurement
system. The translation of Celsius to
Fahrenheit or kilometers to miles, while
scientifically trivial, may present a serious
impediment to many users.

• Wrong Time: Information may be correct,
relevant and readable, but presented at the
wrong time. Stock information, for instance, is
most useful when presented in real time.

• Wrong Format: Information can look great
on a large computer monitor, but be
completely unsuitable for small information

devices such as PDAs and cell phones.
A mismatch between information presentation and
the formats required by an information consumer can
be difficult to address with a traditional Web
browser. For economic reasons, a producer may
choose to use a single representation scheme that
addresses only the needs of an anticipated majority of
information consumers. Because creating and
maintaining multilingual Web sites can be costly,
information consumers who are not proficient
English readers have few options with this model.

In the case of a person with a cognitive disability
planning to use the public transportation system,
there is a good chance that essential information
exists on the Web but cannot be accessed
meaningfully with conventional information
technology. The goal of this proposal is to extend
control to information consumers and let them use
information in fundamentally new ways that might
not be anticipated by information producers.

The ultimate questions involve who controls
information representation and how the information
is processed. The Control over Representation
diagram (Figure 1) illustrates a continuum of control
that ranges between two extreme positions. From left
to right, it identifies conceptual as well as technical
frameworks in order of increasing information
consumer control: the Syntactic Web, the Semantic
Web and the Pragmatic Web.

Silvia Berti
84

The Syntactic Web. In this first generation of Web
technology, a simple markup language (HTML) is
used to define content at a high level of detail at a
syntactic level that controls the appearance of
information. Information producers define content,
font selection, layout, and colors. Information
consumers have limited control over representations
in their browser, including adjusting the size of fonts,
and enabling/disabling animations and plug-ins.

The Semantic Web. According to Tim Berners-Lee,
the Semantic Web [3-5] will “radically change the
nature of the Web.” [4] The formal nature of
representation languages such as the eXtensible
Markup Language (XML) and the Resource
Description Framework (RDF) make Web-based
information readable not only to humans, but also to
computers. For instance, semantic-enabled search
agents will be able to collect machine-readable data
from diverse sources, process it and infer new facts.
Unfortunately, the full benefits of the Semantic Web
may be years away and will be reached only when a
critical mass of semantic information is available.
Critics of the Semantic Web [6] point out the
enormous undertaking of creating the necessary
standardized information ontologies to make
information universally processable.

The Pragmatic Web. In contrast to the Syntactic and
Semantic Web the Pragmatic Web is not about form
or meaning of information but about how
information is used.

The Pragmatic Web’s mission is to provide
information consumers with computational agents to
transform existing information into relevant
information of practical consequences. This
transformation may be as simple as extracting a
number out of a table from a single Web page or may
be as complex as intelligently fusing the information
from many different Web pages into new aggregated
representations.

This agent-based transformation needs to be
extremely flexible to deal with a variety of contexts
and user requirements. An agent running on a
desktop computer with a large display may utilize
rich graphical representation versus an agent running
on a cell phone with a small display may have to
resort to synthesized text information to convey the

same information.

The Pragmatic Web research explores the practice of
using information and the design of tools supporting
this process.

Instead of the traditional “click the link” browser-
based interfaces, agents capable of multimodal
communication will provide access to Web-based
information. Agent communication methods include
facial animation, speech synthesis, and speech
recognition and understanding. End-users or
caretakers will instruct agents to transform
information in highly customized ways. Agents will
work together to combine information from multiple
web pages, access information autonomously or
triggered by voice commands, and represent
synthesized information through multimodal
channels.

End-User Customization [7, 8] will be an integral
part of the Pragmatic Web. Successful development
of end-user customization will make giant steps
toward an Every Citizen Interface (ECI) [9] by letting
minority groups of information consumers, possibly
down to the single individual level, obtain ways to
control information representations in accordance
with their specific needs. This computer-supported
Information Processing is a form of knowledge
management [10, 11] that turns raw data into
information. End-user customization will let users
specify where information is accessed (e.g. part of an
existing Web page), how it is accessed (e.g., voice
activated), and how information is further processed.
For instance, a Pragmatic Web application could run
on a wireless PDA equipped with GPS to help a
person with a cognitive disability navigate through
town using the local public transportation system.

The Pragmatic Web does not intend to subsume the
Syntactic Web or the Semantic Web. On the contrary,
the Pragmatic Web will initially work with the
Syntactic Web by letting end-user customizable
agents extract information out of existing (HTML)
Web pages [12]. When the Semantic Web reaches a
minimal critical mass, the Pragmatic Web will then
utilize the Semantic Web with agents that access
ontologies and make inferences based on these
ontologies.

.

Silvia Berti
85

BOULDER MOUNTAIN BIKE ADVISOR

This is an AgentSheets-based application that connects real-time Web
information with speech recognition. A user asks “Where should I go
mountain biking.” Several agents located on a map of Boulder County
react to this voice command. These agents are representing locations that
are possible candidates for biking and also feature real time, Web
accessible weather information sensors. Rules previously defined by the
users capture pragmatic interpretations. For instance, an agent may reply

(using speech output): “It’s really nice up here at Betasso but you should
bring a jacket because it’s a little windy”

BOULDER LIVE

Navigating through a city using public transportation
can be a challenge. An effort sponsored by the
Coleman foundation is using Added Dimension 3D
to help persons with cognitive disabilities with
navigation tasks. 27 Global Positioning System
equipped busses in Boulder Colorado are tracked
wirelessly by agents. A 3D visualization allows
observers to see the current location of busses
and GPS equipped bus users. Observers can
watch in real time, play recorded data and
assume different camera positions (e.g., birds
eye, bus stop perspective, bus driver
perspective). Bus users can locate relevant
busses based on their current position and
identification information. End-user
development allows users, or their care
providers, to specify rules that turn the
general bus information space into
personally relevant, pragmatic
information communicated through cell phones.

[1] A. Fox, B. Johanson, P. Hanrahan, and T. Winograd, "Integrating Information Appliances into an
Interactive Workspace," IEEE Computer Graphics and Applications, vol. 30, pp. 54-65, 2000.

[2] E. Lamb, "Web content struggles to go worldwide," in Red Herring, vol. 91, 2001, pp. 38-39.
[3] W3C, "W3C Semantic Web Activity Statement," 2001.
[4] T. Berners-Lee, J. Hendler, and O. Lassila, "The Semantic Web," Scientific American, 2001.
[5] T. Berners-Lee, Weaving the Web: The Original Design and Ultimate Destiny of the World Wide

Web by its Inventor. San Francisco, CA: Harper, 1999.
[6] M. Frauenfelder, "A Smarter Web," Technology Review, 2001.
[7] B. Nardi, A Small Matter of Programming. Cambridge, MA: MIT Press, 1993.
[8] C. Jones, "End-user programming," IEEE Computer, vol. 28, pp. 68-70, 1995.

Silvia Berti
86

[9] T. a. E.-C. I. t. t. N. s. I. I. S. Committee, C. S. a. T. Board, M. Commission on Physical Sciences,
and Applications, and N. R. Council, More Than Screen Deep: Toward Every-Citizen Interfaces to
the Nation's Information Infrastructure. Washington, D.C.: National Academy Press, 1997.

[10] M. Sumner, "Knowledge management: theory and practice," presented at Proceedings of the 1999
ACM SIGCPR conference on Computer personnel research, New Orleans, LA USA, 1999.

[11] A. J. Murray, "Knowledge management and consciousness," Advances in Mind–Body Medicine,
vol. 16, pp. 233-237, 1999.

[12] W. H. Inmon, "The Data Warehouse and Data Mining," Communications of the ACM, vol. 39, pp.
49-50, 1996.

Silvia Berti
87

Supporting End-User Development of Component-Based
Applications by Checking Semantic Integrity

Markus Won
Institute for Computer Science III, University of Bonn

Roemerstrasse 164, 53117 Bonn, Germany
+49 228 73 4506,

won@cs.uni-bonn.de

ABSTRACT
Component-based software can be used to build highly
tailorable and therefore flexible software systems. To sup-
port end-users when tailoring or even developing their ap-
plications themselves different approaches were discussed.
This papers describes an interactive integrity check as a
support for end-user development or tailoring. It is based
on the idea that developers can describe the “right” use of
their components as well as they can describe properties
which belong to specific groups of applications. Those in-
formation can be used to check the application composed
by such components at tailoring time. Thus, the learning of
tailoring activities will improve as well as a better under-
standing for the resulting software can be achieved.

Keywords
End-User Development, Tailoring, Component-Based Sys-
tems, Integrity Checking

INTRODUCTION
Most of the software sold nowadays are off-the-shelf prod-
ucts designed to meet the requirements of very different
types of users. One way to meet these requirements is to
design software that is flexible in such a way that it can be
used in very different contexts. This flexibility can be
achieved by tailorable design architectures. The idea be-
hind this concept is that every user can tailor his software
in the way that it meets his personal working contexts best
or build an application “from the scratch” using existing
components.
Component-based architectures – basically developed with
the idea of higher reusability of parts of software – can be
used to build those highly flexible software. The same op-
erations that are used by developers (i.e. choosing compo-
nents, parameterizing them, binding them together) then
can be applied to the context of end-user development. The
main difference is the granularity and semantics of the sin-
gle components.
Especially if the components have a GUI representation it
is quite easy to design a tailoring language including a vis-
ual representation. Although both – the idea of adapting an
application seen as a composition of components and the
use of visual tailoring language which supports only very
few tailoring mechanisms – are well understood by users,
there is a need for further support during tailoring time.

This paper describes a new approach which uses an integ-
rity check not only to ensure correctness of an application
but support users interactively during development time (as
a guidance). So, an integrity checking mechanism not only
has to control the validity of the composition but shows the
source of error and also can give hints or corrects the com-
position itself. The idea behind that is not only to assist the
end-user’s construction activities but also to stimulate the
learning of the tailoring language, the proper use of the
components and of the functionality of the resulting appli-
cation (by looking behind the scenes).
In the following section the context of this work is de-
scribed in more detail focusing on tailorable component-
based software. After that we will concentrate on the idea
of integrity and integrity checking which are both common
in computer science. Here a short overview on the state of
the art is given. The following sections then focus on the
idea of integrity checking as a support for end-user tailor-
ing and shows the current state of our prototype.

COMPONENT-BASED TAILORABILITY
In the last years component-based architectures [10] have
become quite fashionable in the field of software engineer-
ing. A very important property of a component is its reus-
ability and independent development of components. Thus,
components can be seen as small programs which can exist
and run alone but may also be combined with other com-
ponents. An application normally consists of several com-
ponents that are connected with each other. Applications
based on component architectures are designed by selecting
one or more components and connections between them.
Furthermore, applications can be easily enhanced by add-
ing new components to the existing set. Mainly there are
three different operations which are used to design applica-
tions with component-based architectures.
• adding or removing components,
• changing the parameters of one component or
• linking two components according to their specified

interfaces
They can be used during construction time as well as in
case of tailoring an existing application. [9]. The end-user
tailoring language then consists of those three simple op-
erations. The operands within the tailoring language are the
components. According to ease the learning of such a tai-
loring language it is due to the designer of an component

Silvia Berti
88

set to choose the right granularity and a “natural” descrip-
tion of the components’ functionality. Thus, beginners start
to compose their own applications by using few compo-
nents which provide for a great amount of functionality,
whereas more experienced users can combine more com-
ponents which are smaller. A second step to ease the learn-
ing therefore is to allow for a layered architectures [12]
which means that several components can be stick together
and saved as one larger component (which we call abstract
component).
This idea was implemented with the FREEVOLVE platform
[9] which is based on the FLEXIBEAN [9] component
model. Several visual tailoring environments were devel-
oped and evaluated. Most of the users understood the con-
cept of component-based architectures easily as there are
several domains in real life which are very similar to that
concept. One of the remaining problems is that it is not
clear which component to choose or how the components
have to be bound together. Seen from the perspective of the
less-experienced developers the semantics of the compo-
nents as well as their parameters and interfaces have to
become more transparent. In the following several concepts
that ease the learning of a tailoring environment as well as
their integration into a search tool based on the ideas of the
FREEVOLVE platform are described shortly.
First, Mackay [4] found that the lack of documentation of
respective functions is a barrier to tailoring. Manuals and
help texts are typical means to describe the functionality of
applications. Thus, all simple components within
FREEVOLVE were extended by descriptions. Furthermore,
help texts can be added to abstract components by the com-
posers. Such an abstract component and the belonging
description then can be annotated by other users. So, dis-
cussions could support the deeper understanding of an tai-
loring artifact.
Mackay [4] and Oppermann and Simm [6] found that ex-
perimentation plays a major role in learning tailoring func-
tions. “Undo function”, “experimental data”, “neutral
mode”, etc. are features which support users in carrying out
experiments with a system’s function. Those functions
were integrated into the FREEVOLVE platform. Further-
more, an exploration mode was added which simulates a
work space with experimental data. Users who want to ex-
plore the changed functionality of a tailored application can
do so by looking at the impacts on the virtual work space
when using the application.
Examples provided by other users are an important trigger
to tailor [15]. While the FREEVOLVE tailoring environment
supports experiments, the question how to support the ex-
ploration of compound components or elementary compo-
nents remains. These artifacts cannot be executed in the
environment by themselves. A solution is to exemplify the
use of a component by a small characteristic example ap-
plication.
Finally, automatically generated and visualized integrity
checks can prevent from building pointless application (cf.

[13]). Here integrity checks are used not only to prevent
from failures but in the way of supporting users when de-
veloping their applications in the way that making failures
and getting corrections on that can be seen as learning.1
Thus in the following we will concentrate on how integrity
checks can be used to ease the learning of a component-
based tailoring language.

STATE OF THE ART – INTEGRITY CONTROL
Integrity checking is widely common within different fields
of computer science. In the following we will list the tech-
niques (cf. Figure 1) which are used in our concept (see
next section).
Database integrity: The domain of information systems is
concerned with the consistent structuring and storing of
information. During design time scheme transformations
can help to create a appropriate data models [8] which pre-
vents from inconsistent data. During runtime information
systems maintain the consistent data basis by controlling
new input or changes. That can be done by constraints or
triggers [8].
Software engineering (design by contract): The design by
contract-concept [5] concentrates on the idea that addi-
tional conditions can be added to methods when they are to
be invoked. So, a pre-condition can be formulated which
has to be fulfilled by the invoking object. On the other
hand after the method has ended a post-condition is guaran-
teed. For Java there are special tools (i.e. [3]) which deal
with this approach focusing on better error removal and
therefore faster development

Figure 1: Integrity strategies (Overview)

Additional semantic interface descriptions: Behavior Pro-
tocols [7] add extending information to the interface defini-
tion by describing how a component can be used (which
methods can be called in which order). If the component is
used, the caller has to comply with this protocol.

1 This technique often applied by developers who use the

error message of the compiler to make corrections or im-
provements. The success depends to a great extent on the
quality of the developing tools.

Silvia Berti
89

Application templates including integrity constraints: Birn-
gruber and Hof [1] describe a group of applications by a
plan. This plan consists of conditions on the use of special
components, parameters which are dependent on others,
etc. The idea here that the so called CoPL Generator analy-
ses the plan and builds an application according to those
conditions. The composition is done semi-automatically as
there is user interaction where decisions can be made.

CONSTRAINT- AND EVENT-FLOW-BASED INTEGRITY
In the following we will describe our approach of extend-
ing the FREEVOLVE platform by an integrity check. This is
done in two steps: First integrity strategies and a condition-
describing language have to be designed. Those different
integrity strategies are all based on the assumption that spe-
cial meta information on the components and about do-
mains or groups of applications is given or can be added to
the component set. After that there an integrity checking
mechanism which interacts with the tailoring end-users
marks errors, gives hints etc. (see above) has to be inte-
grated. The design of the interaction between the integrity
check and the users should be done with the focus on easy
understanding and helping to learn how to tailor by assem-
ble components.
The integrity checks implemented in FREEVOLVE are based
on two main techniques: Constraints and Event Flow Integ-
rity.
Constraints – as they are used in database systems – moni-
tor a system according to specific conditions. If a condition
is not fulfilled anymore, the system outputs an error mes-
sage. Some systems do further actions to correct the sys-
tem’s state according to the violated condition. In our sys-
tem the components may have additional conditions (i.e.
size, color etc.) which have to be controlled. If there are
dependencies between different component they have to be
described externally. But there can be mutual dependencies
between different parameters within one component, too.
They can be checked within the component’s functionality.
But an explicit description of those dependencies not only
ensures the correct parameterization but also explains parts
of the functionality, thus helps learning and understanding
the component’s semantics. External dependencies between
parameters of different components have to be described
explicitly. Furthermore, explicit information to components
enhance the flexibility, especially if integrity conditions are
bound to a special field of application or domain. Integrity
conditions here an be compared to constraints in DBMS.
According to this comparison automatic corrections can be
seen as triggers where the action is the adjustment itself.
The Event Flow Integrity (EFI) [12] controls the data flow
between components. A simple example illustrates the idea
of this technique. In Figure 2 there are three components
building a very simple search tool. A start button triggers a
search engine which outputs the search result to another
component (switch). To ensure that there are correct con-
nections between these three components one could declare
two constraints. In this special case we would have “the

search engine has to be triggered (by a button)” and “the
search result has to be passed to another component”. The
problem is that the switch (third component) is no real out-
put component but only splits the search result. What we
want to ensure is the data flow. Furthermore, we want to
ensure that the search result is passed to an output compo-
nent, or else: the produced search result has to be con-
sumed.

Input

Output

must

Figure 2: Event Flow Integrity

EFI now uses special information which belong to every
component that describe how the ports are used and how
the component behaves according to a data stream (i.e.
producer, consumer, transmitter). Using those information
EFI checks if every produced event or data (that has to be
consumed) will be consumed. The algorithms used here are
similar to the one which are used to analyze workflows [2]
and base on Petri Nets.
Additionally, we have integrated so called application tem-
plates. To ease the end-user development we offer those
templates for different kinds of application types. Here
constraints not only for one component but for a set of
components (composition, the application itself) are given.
So, given the search tool example, a template “Search
Tool” would ensure that there is a search engine and at
least one output component (a arbitrary component which
consumes search results). Furthermore the output port of
the search engine (result) should be set to “essentially
needed” to ensure that EFI checks whether there is a con-
nection to at least one output component.
Both integrity strategies have to be integrated into the in-
cremental process of developing an application. So in the
following we will first describe how these ideas fit into the
tailoring language. After that, we will describe how an tai-
loring or development GUI has to be designed to present
those integrity information to the users.

SUPPORTING END-USER DEVELOPMENT BY INTE-
GRITY CHECKS
Both strategies have to be mapped to the tailoring opera-
tions which component architectures provide for. This is
essential especially if the integrity checking should be
done during the tailoring and so support the tailoring or
developing act itself. Thus, the integrity constraints and
conditions have to be associated with the three tailoring
operations, that are:
• Parameterization of components: Can be done by

constraints. In some cases automatic corrections of pa-

Silvia Berti
90

rameters can be useful. Dependencies should be pre-
sented to the users. Eventually, hints can be given how
corrections can be done.

• Changing the connections: Every time a connection
is changed EFI can be check interactively. Using this
mechanism interactive support can be given to the us-
ers during development time.

• Adding/removing components: Global constraints
described in application templates (.i.e. for a the
“class” of movie player applications) ensure the exis-
tence of some components. Furthermore here are de-
scribed dependencies between component’s existence
(if component a is part of application X then there
must be a component b or a component c). Addition-
ally every time a component is added or removed EFI
has to check if there are needed bindings.

INTEGRITY CHECKING TAILORING ENVIRONMENT
Basically, the FREEVOLVE system provides for an powerful
API that allows easy integration of different visual tailoring
environments. A new developed one supports different
views at the composition (.i.e. WYSIWIG, components and
their connections, tree view on components, etc.). All
views are synchronized with each other. Currently, is de-
signed to support experienced users or administrators (but
not especially programmers) when tailoring. Figure 3
shows screen shots of the first prototype of the tailoring
environment.

Figure 3: Tailoring Environment

The tailoring environment itself provides for an integrity
visualization API. It allows to highlight components or pop
up messages. The current visualization of hints or messages
of the integrity checker is based on the idea that the integ-
rity check should mediate between the user’s tailoring ac-
tion and the tailoring environment. Thus every tailoring
action and the current composition have to be checked.
Messages are displayed by marking the component or con-
nection which causes an error or displaying help texts
(which should be clearly assigned to the defective part of
the composition).

In some cases system generated recommendations can be
shown how to improve the composition. If there is no di-
rect way to do that examples can be generated which illus-

trate the “right” use of the components that are contained in
the defective part of the composition.
First tests with users have been done so far.

CONCLUSIONS
This paper describes a new way how the learning and using
of tailoring or end-user-oriented development languages
can be eased. Here, this is done by adding an integrity
checking mechanism which helps to interactively improv-
ing the developed application. This approach is still ongo-
ing work.

REFERENCES
1. Birngruber, D.: “A Software Composition Language

and Its Implementation”, in Perspectives of System In-
formatics (PSI 2001), vol. LNCS 2244, D. B. Bjorner,
M.; Zamulin, A. V., Ed. Novosibirsk, Russland:
Springer, 2001, pp. 519-529.

2. Blom, M.: “Semantic Integrity in Program Develop-
ment”, in Department of Computer Science: Karlstad
University, 1997.

3. Griffiths, A.: “Introducing JUnit”, 2001,
http://www.octopull.demon.co.uk/java/Introducing_JUn
it.html.

4. Mackay, W. E.: “Users and customizable Software: A
Co-Adaptive Phenomenon”, Boston (MA): MIT, 1990.

5. Meyer, B.: “Eifel: A Language and Environment for
Software Engeneering”, Journal of Systems and Soft-
ware, 1988.

6. Oppermann, R. and Simm, H.: “Adaptability: User-
Initiated Individualization”, in Adaptive User Support -
Ergonomic Design of Manually and Automatically
Adaptable Software, R. Oppermann, Ed. Hillsdale, New
Jersey: Lawrence Erlbaum Ass, 1994.

7. Plásil, F. V., S.; Besta, M.: “Behavior Protocols”, Dep.
of SW Engineering, Charles University, Prague, Tech-
nical Report, No: 2000/7, August 2000

8. Silberschatz, A., Korth, H., and Sudarshan, S.: Data-
base System Concepts, Osborne McGraw-Hill, 2001.

9. Stiemerling, O.: “The Evolve Project.”, in Institute for
Computer Science III, University of Bonn, 2000.

10. Szyperski, C.: Component Software - Beyond object-
orientated programming. New York: ACM Press, 1998.

11. Won, M.: “Komponentenbasierte Anpassbarkeit - An-
wendung auf ein Suchtool für Groupware”, in Institute
for Computer Science III, University of Bonn, 1998.

12. Won, Markus, Cremers, Armin B.: "Supporting End-
User Tailoring of Component-Based Software - Check-
ing Integrity of Composition", in: Proceedings of Co-
lognet 2002 (Conjuction with LOPSTR 2002), Madrid,
Spain, 19.-20.09.2002

13. Wulf, V.: “Let's see your Search-Tool! - Collaborative
use of Tailored Artifacts in Groupware”, in: Proceed-
ings of GROUP '99, ACM-Press, pp. 50-60, 1999

Silvia Berti
91

	papers.pdf
	doc2-11.pdf
	CHI 2003 030114 final.pdf
	ABSTRACT
	Keywords

	INTRODUCTION
	COMPONENT-BASED TAILORABILITY
	STATE OF THE ART – INTEGRITY CONTROL
	CONSTRAINT- AND EVENT-FLOW-BASED INTEGRITY
	SUPPORTING END-USER DEVELOPMENT BY INTE˜GRITY CHECKS
	INTEGRITY CHECKING TAILORING ENVIRONMENT
	CONCLUSIONS
	REFERENCES

	cover page chi workshop.pdf
	October 2003

